Forgot password?
 Register account
View 1894|Reply 6

[不等式] 求$\max\{4x^2+4y^2,3(x-1)^2+3y^2,x^2+(y-\sqrt3)^2\}$的最小值

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-9-10 21:51 |Read mode
设x,y为实数,求$\max\{4x^2+4y^2,3(x-1)^2+3y^2,x^2+(y-\sqrt3)^2\}$的最小值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-10 22:11
配个系数加起来就好了啦,记 $M=\max\bigl\{4x^2+4y^2,3(x-1)^2+3y^2,x^2+\bigl(y-\sqrt3\bigr)^2\bigr\}$,则
\[7M\geqslant 4x^2+4y^2+6(x-1)^2+6y^2+4x^2+4\bigl(y-\sqrt3\bigr)^2
=12+14\left(x-\frac37\right)^2+14\left(y-\frac{2\sqrt3}7\right)^2
\geqslant 12,\]
所以 $M\geqslant 12/7$,当 $x=3/7$, $y=2\sqrt3/7$ 时 $M=12/7$。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-11 13:10
怎么配的
能用几何意义解吗?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2016-9-11 18:22
怎么配的
能用几何意义解吗?
天音 发表于 2016-9-11 13:10
能用几何意义,加权的Fermat问题吧

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-11 21:08
回复 4# 其妙


    怎么做?

3

Threads

32

Posts

192

Credits

Credits
192

Show all posts

三尺水 Posted 2016-9-24 17:48
三个式子相等,两个方程解x,y    式子超过3个问题就复杂了

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-9-26 22:31
回复 6# 三尺水
超过三个确实很麻烦。

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit