Forgot password?
 Register account
View 1830|Reply 2

[不等式] 设$x\in(0,\frac12)$,证明不等式:$\pi(x-x^2)>(1-2x)\tan(\pi x)$

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-9-11 21:35 |Read mode
如题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-12 03:00
常规的求导方法就可以了,都是刚刚好的。

令 $f(x)=\pi(x-x^2)-(1-2x)\tan(\pi x)$,则
\[f'(x)=\pi(1-2x)-\pi(1-2x)\sec^2(\pi x)+2\tan(\pi x)
=\tan^2(\pi x)\bigl( 2\cot(\pi x)-\pi(1-2x) \bigr), \]
令 $g(x)=2\cot(\pi x)-\pi(1-2x)$,则
\[g'(x)=-2\pi\csc^2(\pi x)+2\pi=-2\pi\cot^2(\pi x)<0, \]
故 $g(x)>g(1/2)=0$, $f'(x)>0$, $f(x)>f(0)=0$,即得证。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-14 08:38
原来是这样,多谢

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit