Forgot password?
 Register account
View 1890|Reply 4

[不等式] 大家看看这个不等式如何证明?

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-9-11 21:57 |Read mode
已知a,b,c为三角形的三边长,求证   $2\left ( \frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a} \right )\geq a+b+c+\left ( \frac{a^{2}}{c}+\frac{b^{2}}{a}+\frac{c^{2}}{b} \right )$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-12 22:50
搞了个有点麻烦的证法……

因为
\begin{align*}
2\sum \frac{a^2}b-2\sum a&=2\sum \frac{(a-b)^2}b, \\
\sum \frac{b^2}a-\sum a&=\sum \frac{(a-b)^2}a,
\end{align*}
两式相减得
\[2\sum \frac{a^2}b-\sum a-\sum \frac{b^2}a
=\sum \left( \frac2b-\frac1a \right)(a-b)^2,\]
所以原不等式等价于
\[\sum c(2a-b)(a-b)^2\geqslant 0,\]
由三边长可设 $a=y+z$, $b=z+x$, $c=x+y$, $x$, $y$, $z>0$,则不等式等价于
\[\sum (x+y)(2y+z-x)(x-y)^2\geqslant 0,\]
这时还难以判断,要再变下形,为此先推导一个恒等式,
因为 $\sum(u-v)w^3=(u+v+w)\prod(v-u)$,令 $u=y-z$, $v=z-x$, $w=x-y$ 即得恒等式
\[\sum (x+y-2z)(x-y)^3=0,\]
由此可知要证的不等式等价于
\[\sum \bigl( (x+y)(2y+z-x)+(x+y-2z)(x-y) \bigr)(x-y)^2\geqslant 0,\]
化简为
\[\sum \bigl( y(x+y+z)-zx+2yz \bigr)(x-y)^2\geqslant 0,\]
下面证明比上式更强的
\[\sum \bigl( y(x+y+z)-zx \bigr)(x-y)^2\geqslant 0,\]
记 $S_z=y(x+y+z)-zx$, $S_x=z(x+y+z)-xy$, $S_y=x(x+y+z)-yz$,则有
\[S_x+S_y+S_z=(x+y+z)^2-xy-yz-zx>0,\]
以及
\begin{align*}
S_xS_y+S_yS_z+S_zS_x
&=\sum \bigl( z(x+y+z)-xy \bigr)\bigl( x(x+y+z)-yz \bigr) \\
&=(x+y+z)\sum \bigl( zx(x+y+z)-x^2y-yz^2 \bigr)+\sum xy^2z \\
&=(x+y+z)\sum (z^2x-x^2y+zx^2-yz^2+xyz)+\sum xy^2z \\
&=4xyz(x+y+z) \\
&>0,
\end{align*}
所以 $S_z(x-y)^2+S_x(y-z)^2+S_y(z-x)^2\geqslant0$,原不等式获证。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-14 08:32
谢谢,只能看看,太难想了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-15 14:07
想起撸题集里撸过的一个结论,马上有更简洁证法了……

原不等式等价于
\[\sum \frac{a^2}b-\sum a\geqslant \sum \frac{b^2}a-\sum \frac{a^2}b,\]
左边配方,右边分解,再去分母,等价于
\[\sum ac(a-b)^2\geqslant (a+b+c)(b-a)(c-b)(a-c),\]
作代换 $a=y+z$, $b=z+x$, $c=x+y$, $x$, $y$, $z>0$ 后等价于
\[\sum (y+z)(x+y)(x-y)^2\geqslant 2(x+y+z)(x-y)(y-z)(z-x),\]
根据《撸题集》第 2 页引理 1.1.1 的证明过程,我们有
\[2(x+y+z)(x-y)(y-z)(z-x)\leqslant \frac12\sum (x^2-y^2)^2,\]
因此只需证
\[\sum (y+z)(x+y)(x-y)^2\geqslant \frac12\sum (x^2-y^2)^2,\]

\[\sum (y+2z-x)(x+y)(x-y)^2\geqslant 0,\]
再次运用2楼那个恒等式,上式等价于
\[\sum \bigl( (y+2z-x)(x+y)+(x+y-2z)(x-y) \bigr)(x-y)^2\geqslant 0,\]
化简即为
\[4\sum yz(x-y)^2\geqslant 0,\]
显然成立,即得证。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-15 22:03
回复 4# kuing

好是好,可惜还是要知道结论!

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit