Forgot password?
 Register account
View 2502|Reply 8

[不等式] 几道e题

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-9-11 22:08 |Read mode
QQ截图20160911220337.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-12 01:45
1、显然 \an 递增,注意到
\[2=\sqrt{1+\sqrt{2^2+\sqrt{2^4+\sqrt{2^6+\cdots +\sqrt{2^{2(k-1)}+\sqrt{2^{2k}+2^{k+1}+1}}}}}},\]
可见 $a_n<2$,所以收敛。

注:那等式之前在《撸题集》第106页撸过。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-12 02:02
2、由 $e^x$ 的级数展开式以及均值,有
\[\sum_{k=0}^n\frac1{k!}-\frac e{2n}
<e-\frac e{2n}<e-\frac e{2n+1}
=\frac{2ne}{n+n+1}
<\frac{ne}{\sqrt{n(n+1)}}
=e\sqrt{\frac n{n+1}},
\]
所以只需证
\[e\sqrt{\frac n{n+1}}<\left(1+\frac1n\right)^n,\]

\[\left(1+\frac1n\right)^{n+0.5}>e,\]
这是已知结论,大家应该都见过了吧,我就不证了。

这样看来原不等式有点弱,而且那和式纯吓人……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-12 02:16
3、仍然运用那结论,可以加强右边,对任意正整数 $k$,有
\[\left( 1+\frac1k \right)^k<e<\left( 1+\frac1k \right)^{k+0.5},\]

\[\prod_{k=1}^n\left( \frac{k+1}k \right)^k<e^n<\prod_{k=1}^n\left( \frac{k+1}k \right)^{k+0.5},\]
化简为
\[\frac{(n+1)^n}{n!}<e^n<\frac{(n+1)^{n+0.5}}{n!},\]
变形即
\[\left( \frac{n+1}e \right)^n<n!<\sqrt{n+1}\left( \frac{n+1}e \right)^n.\]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-14 08:40
牛!
还有一道呢?

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-10-3 14:18
顶下,最后一题没人做吗

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2016-10-4 06:20
回复 6# 天音


原题不好看,不想管
只给结论,懒得证明
\[\frac{1}{n^n}\sum_{k=1}^nk^k=1+\frac{1}{e}·\frac{1}{n}+\frac{2+e}{2e^2}·\frac{1}{n^2}+o(\frac{1}{n^2})\]
或者改成用$n-1$的版本
\[\frac{1}{n^n}\sum_{k=1}^nk^k=1+\frac{1}{e}·\frac{1}{n-1}-\frac{e-2}{2e^2}·\frac{1}{(n-1)^2}+o(\frac{1}{(n-1)^2})\]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-10-4 14:55
好吧,还是谢了

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-2 12:40

n^n求和的估计

QQ图片20210602123820.jpg
$ S_{n}=1+2^{2}+3^{3}+\cdots+n^{n}, n \in \mathrm{N}_{+} $
对n>1,
$ n^{n}\left[1+\frac{1}{4(n-1)}\right] \leqslant S_{n}<n^{n}\left[1+\frac{2}{e(n-1)}\right] $

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit