|
kuing
posted 2016-9-12 02:16
3、仍然运用那结论,可以加强右边,对任意正整数 $k$,有
\[\left( 1+\frac1k \right)^k<e<\left( 1+\frac1k \right)^{k+0.5},\]
故
\[\prod_{k=1}^n\left( \frac{k+1}k \right)^k<e^n<\prod_{k=1}^n\left( \frac{k+1}k \right)^{k+0.5},\]
化简为
\[\frac{(n+1)^n}{n!}<e^n<\frac{(n+1)^{n+0.5}}{n!},\]
变形即
\[\left( \frac{n+1}e \right)^n<n!<\sqrt{n+1}\left( \frac{n+1}e \right)^n.\] |
|