Forgot password?
 Register account
View 2082|Reply 6

[函数] 三角求最值,求指教

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2016-9-15 21:07 |Read mode
QQ图片20160915210009.jpg
图片1.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-16 21:00
题目:
当 $\theta\in[0,2\pi]$ 时,求 $f=\bigl|\sin^2\theta\bigl(
\sin^3(2\theta)\sin^3(4\theta)\sin^3(8\theta)\cdots\sin^3(2^{n-1}\theta)
\bigr)\sin(2^n\theta)\bigr|$ 的最大值。

\[f_1(\theta)=\abs{\sin^2\theta \sin(2\theta)},\]

\begin{align*}
\bigl( f_1(\theta) \bigr)^2&=\abs{2\sin^3\theta \cos\theta}^2 \\
& =4\sin^6\theta (1-\sin^2\theta) \\
& =\frac43\sin^2\theta \sin^2\theta \sin^2\theta (3-3\sin^2\theta) \\
& \leqslant \frac43\left( \frac{3\sin^2\theta +3-3\sin^2\theta}4 \right)^4 \\
& =\left( \frac34 \right)^3,
\end{align*}
所以对任意 $\theta$ 均有
\[f_1(\theta )\leqslant \frac{3\sqrt3}8,\]
当 $n\geqslant 2$ 时,设
\[f_n(\theta)=\left| \sin^2\theta \cdot \prod_{k=1}^{n-1} \sin^3(2^k\theta)\cdot \sin(2^n\theta) \right|,\]

\begin{align*}
f_{n+1}(\theta)&=\left| \sin^2\theta \cdot \prod_{k=1}^n \sin^3(2^k\theta)\cdot \sin(2^{n+1}\theta) \right| \\
& =\left| \sin^2\theta \cdot \prod_{k=1}^{n-1} \sin^3(2^k\theta)\cdot \sin(2^n\theta)\cdot \sin^2(2^n\theta)\sin(2^{n+1}\theta) \right| \\
& =f_n(\theta)f_1(2^n\theta),
\end{align*}
容易验证上式对 $n=1$ 也成立,故此有
\[f_n(\theta)=f_1(2^{n-1}\theta)f_1(2^{n-2}\theta)\cdots f_1(2\theta)f_1(\theta)\leqslant \left( \frac{3\sqrt3}8 \right)^n,\]
又容易验证当 $\theta=60\du$ 时取等,所以上式右边就是 $f_n(\theta)$ 的最大值。

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2016-9-17 08:09
果然精妙!酷版威武!

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2016-9-17 08:19
Last edited by longma 2016-9-18 06:32 001.png

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2016-9-17 10:51
显然可以

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-17 12:55

\[f_1(\theta)=\abs{\sin^2\theta \sin(2\theta)},\]

\begin{align*}
\bigl( f_1(\theta) \bigr)^2&= ...
kuing 发表于 2016-9-16 21:00
看下题目,那图看得眼花花花

$$f_n(\theta)=\left| \sin^2\theta \cdot \left(\prod_{k=1}^{n-1} \sin^3(2^k\theta)\right)\cdot \sin(2^n\theta) \right|$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-17 17:18
回复 6# isee

嗯,已在二楼补上了原题目的 LaTeX 代码,并且增加了一项 $\sin^3(8\theta)$,因为原题的表达式存在歧义——
注意 $\{2,4,\ldots,2^{n-1}\}$ 可以理解为 $\{2,4,8,16,\ldots,2^{n-1}\}$ 也可以理解为 $\{2,4,6,8,\ldots,2^{n-1}\}$,都是说得过去的。
所以说这题表达得不好,其实最好的方式还是用 $\displaystyle\prod$ 的形式来写。

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit