Forgot password?
 Register account
View 1423|Reply 8

向量求最值,好像不对!

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2016-9-19 09:14 |Read mode
Last edited by hbghlyj 2025-4-6 03:36 2016091905.png
解:根据条件得, $\overrightarrow{A E}^2=\frac{5}{4}, \overrightarrow{B D}^2=\frac{5}{4}, \overrightarrow{O P}^2=1, \overrightarrow{A E} \cdot \overrightarrow{B D}=\left(\frac{1}{2} \overrightarrow{O B}-\overrightarrow{O A}\right) \cdot\left(\frac{1}{2} \overrightarrow{O A}-\overrightarrow{O B}\right)=$

\[
\begin{aligned}
& 0-\frac{1}{2}-\frac{1}{2}+0=-1 ; \\
& \therefore \overrightarrow{O P}^2=(x \overrightarrow{A E}+y \overrightarrow{B D})^2 \\
& =x^2 \overrightarrow{A E}^2+2 x y \overrightarrow{A E} \cdot \overrightarrow{B D}+y^2 \overrightarrow{B D}^2 \\
& =\frac{5}{4}\left(x^2+y^2\right)-2 x y \\
& =1 ; \\
& \therefore x^2+y^2=\frac{4}{5}(2 x y+1) \geq 2 x y ; \\
& \therefore \mathrm{xy} \leq 2
\end{aligned}
\]


据题意知, $\mathrm{x}<0, \mathrm{y}<0, \overrightarrow{O C}=(1,1)$ ;

\[
\therefore \vec{a} \cdot \overrightarrow{O C}=x+y=-[(-x)+(-y)] \leq-2 \sqrt{x y} ;
\]


由 $\mathrm{xy} \leq 2$ 得,$\sqrt{x y} \leq \sqrt{2},-2 \sqrt{x y} \geq-2 \sqrt{2}$ ;
$\therefore x+y \leq-2 \sqrt{2}$ ,当且仅当 $x=y=-\sqrt{2}$ 时取"$="$ ;
$\therefore \vec{a} \cdot \overrightarrow{O C}$ 的最大值为 $-2 \sqrt{2}$ .
故选:D.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-19 20:36
没细看计算过程,就看后面的逻辑就明显错了,他用 $x+y\le-2\sqrt{xy}$,然后又 $-2\sqrt{xy}\ge-2\sqrt2$,就所以 $x+y\le-2\sqrt2$?明显乱来。

其实这题非常简单,不用任何技巧,设 $P(\cos t,\sin t)$, $t\in[0,\pi/2]$,则
\[(\cos t,\sin t)=x\left(-1,\frac12\right)+y\left(\frac12,-1\right)
=\left(-x+\frac y2,\frac x2-y\right),\]
从而
\[\led
-x+\frac y2&=\cos t,\\
\frac x2-y&=\sin t
\endled
\riff x+y=-2(\cos t+\sin t)\in \bigl[-2\sqrt2,-2\bigr].\]

呐,两下子就把范围搞出来了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-20 12:26

    稀乱的解答

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-20 12:45
$\led
-x+\frac y2&=\cos t,\\
\frac x2-y&=\sin t
\endled$ ...
kuing 发表于 2016-9-19 20:36

    得到关于t的参数方程和主楼答案第7行结果是一样的,都得到了$5x^2-8xy+y^2=4$,然后求$x+y$,所以我说主楼图片答案后段来写一气。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-20 13:28
Last edited by isee 2016-9-20 13:46
没细看计算过程,就看后面的逻辑就明显错了,他用 $x+y\le-2\sqrt{xy}$,然后又 $-2\sqrt{xy}\ge-2\sqrt2$ ...
kuing 发表于 2016-9-19 20:36

    坐标法有了,完善下主楼,综合法。

    由已知能得到的(关键)有:$\boldsymbol{AE}^2=5/4=\boldsymbol{BD}^2,\boldsymbol{AE}\cdot \boldsymbol{BD}=-1.$

    题目所求的结果即$x+y$.

    核心条件是$$\boldsymbol {OP}=x\boldsymbol {AE}+y\boldsymbol {BD}.$$

    在此式两边分别同乘以$\boldsymbol {AE}$,$\boldsymbol {BD}$得到:
    $$\frac 54x-y=\boldsymbol{AE}\cdot \boldsymbol{OP}.$$
    $$-x+\frac 54y=\boldsymbol{BD} \cdot \boldsymbol{OP}.$$

    两式相加,并整理得到$$x+y=4\boldsymbol{OP}\cdot (\boldsymbol{AE+BD}).$$

    如图,由向量数量积几何意义(A' 为正方形边的中点),容易求得其范围(这里不求)。
snap.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-20 13:48
建议:如果楼主从事教育相关行业,学学latex代码,有利无害。

入门十分容易,而一般情况下,入门够用了。

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2016-9-20 18:21
回复 6# isee
嗯,我会学习的。

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2016-9-20 18:22
回复 2# kuing

好方法

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2016-9-20 18:23
回复 3# isee
菁优网上的解答

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit