Forgot password?
 Register account
View 1959|Reply 4

[不等式] 3道较难的不等式

[Copy link]

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2016-9-19 20:55 |Read mode
首先是两道很强的不等式
1. $a,,b,c$为正实数,且$a^2+b^2+c^2=3$,证明\[\sqrt{a^2+3b^2} + \sqrt{b^2+3c^2} + \sqrt{c^2+3a^2} \geqslant \sqrt{12(a+b+c)}.\]此题最初来自 http://www.artofproblemsolving.com/community/c6h1268163p6614138,至今无人能证。

2. 已知$a,b,c$为非负实数,且$ab+ac+bc≠0$. 求证:\[\frac{1}{2}+\frac{1}{2}\sqrt{\frac{ab+ca+bc}{a^2+b^2+c^2}}\leq\sqrt{\frac{a^2}{4a^2+5bc}}+\sqrt{\frac{b^2}{4b^2+5ca}}+\sqrt{\frac{c^2}{4c^2+5ab}}\]来自http://bbs.emath.ac.cn/thread-8874-1-2.html

剩下一道求简洁证法:
3. $a,,b,c$为正实数,求证\[\sqrt{\frac{a^3}{a^2+ab+b^2}}+\sqrt{\frac{b^3}{b^2+bc+c^2}}+\sqrt{\frac{c^3}{c^2+ca+a^2}}\geqslant \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{3}}\]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-10-3 14:16
消灭零回复,帮你顶下

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

 Author| Infinity Posted 2016-10-6 11:27
谢谢

0

Threads

20

Posts

110

Credits

Credits
110

Show all posts

睡仙 Posted 2016-10-16 16:24
谁说无人证明,这三个我早整理过了。第一个与第二个都比较难的,一般人就不要浪费时间了。

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

 Author| Infinity Posted 2016-10-17 15:10
回复 4# 睡仙
拿出足够的证明过程你的话才有信服力,否则只是空话毫无意义。

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit