Forgot password?
 Register account
View 1782|Reply 5

[不等式] (1/a+1/b+1/c)[1/(1+a)+1/(1+b)+1/(1+c)]>=9/(1+abc)

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-9-22 23:20 |Read mode
如题,a,b,c都是正数

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-23 01:46
这题可能是由一个经典不等式弱化而来的。
若 $a$, $b$, $c>0$ 则有
\[\frac1{a(1+b)}+\frac1{b(1+c)}+\frac1{c(1+a)}\geqslant \frac3{1+abc},\]
这是一个经典不等式(见《撸题集》第1032页的几个链接),同理也有
\[\frac1{a(1+c)}+\frac1{b(1+a)}+\frac1{c(1+b)}\geqslant \frac3{1+abc},\]
由排序不等式有
\[\frac1{a(1+a)}+\frac1{b(1+b)}+\frac1{c(1+c)}\geqslant \frac1{a(1+b)}+\frac1{b(1+c)}+\frac1{c(1+a)},\]
所以原不等式成立。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-23 14:36
你怎么知道那么多结论,每次都是用我不知道的结论来秒杀……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-9-23 15:42
撸多了,就有精验了……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-23 17:07
撸多了,就有精验了……
kuing 发表于 2016-9-23 15:42

    哈哈,错别字。。。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-9-23 17:22
呵呵、真污

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit