|
kuing
Posted 2016-9-26 12:40
柯西搞定,下面来做个简单的系数推广。
已知常数 $m$, $n$, $s\geqslant 0$ 且 $2m\geqslant s$, $2n\geqslant s$,则有
\[\frac{xy-z^2}{mx+ny+sz}
+\frac{yz-x^2}{my+nz+sx}+\frac{zx-y^2}{mz+nx+sy}\leqslant 0,\]
进一步还可以加强为
\[\sum\frac{z^2}{mx+ny+sz}\geqslant \frac{x+y+z}{m+n+s}\geqslant \sum\frac{xy}{mx+ny+sz},\]
左边由柯西立得,下面证明右边。
由条件可设 $2m=s+t$, $2n=s+u$, $t$, $u\geqslant 0$,则
\[
\sum\frac{xy}{mx+ny+sz}=\sum\frac{2xy}{(s+t)x+(s+u)y+2sz}
=\sum\frac{2xy}{tx+uy+s(y+z)+s(z+x)},
\]
由柯西有
\[\left( \frac tx+\frac uy+\frac{4s}{y+z}+\frac{4s}{z+x} \right)\bigl( tx+uy+s(y+z)+s(z+x) \bigr)\geqslant (t+u+2s+2s)^2,\]
因此
\begin{align*}
\sum\frac{2xy}{tx+uy+s(y+z)+s(z+x)}
&\leqslant \sum\frac{2xy}{(t+u+4s)^2}\left( \frac tx+\frac uy+\frac{4s}{y+z}+\frac{4s}{z+x} \right) \\
&=\frac2{(t+u+4s)^2}\sum\left( ty+ux+\frac{4sxy}{y+z}+\frac{4sxy}{z+x} \right) \\
&=\frac2{(t+u+4s)^2}\sum\left( (t+u)x+\frac{4sxy}{y+z}+\frac{4szx}{y+z} \right) \\
&=\frac2{t+u+4s}\sum x \\
&=\frac{x+y+z}{m+n+s},
\end{align*}
即得证。 |
|