Forgot password?
 Register account
View 4243|Reply 4

[几何] 空间向量数量积的分配律的证明

[Copy link]

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2016-9-26 22:43 |Read mode
a.(b+c)=a.b+a.c

不用坐标的方法证明,用向量的投影方法证明 空间向量数量积的分配率,应该怎么证?

我用向量投影的方法,同平面向量的数量积的分配率的证明,是一样的,没有区别。

但选修2-1的3.1.3 空间向量的数量积运算中,特意问与证明平面向量的数量积的分配率有什么不同?

我觉得,除了作图时,体现出a、b、c向量不在一个平面上,别的没有什么区别。

请大师们给一个不用坐标法的证明。

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2016-9-27 13:46
分配律的证明需要从内积的定义入手证明。

1. 从内积的代数定义入手
$\vec{a}\cdot (\vec{b}+\vec{c})=a_i(b_i+c_i)=a_ib_i+a_ic_i=\vec{a}\cdot \vec{b}+\vec{a}\cdot \vec{c}$
为了表示方便,上面用到了爱因斯坦求和约定。这便是楼主所谓的坐标法。

2. 从内积的几何定义入手
设$\vec{d}=\vec{b}+\vec{c}$,分配律即证明
\[|\vec{a}||\vec{d}| \cos<\vec{a},\vec{d}>=|\vec{a}||\vec{b}| \cos<\vec{a},\vec{b}>+|\vec{a}||\vec{c}| \cos<\vec{a},\vec{c}>\]如果$\vec{a}=\vec{0}$,为平凡情形,显然成立。
如果$\vec{a}\neq\vec{0}$,故只需证明\[|\vec{d}| \cos<\vec{a},\vec{d}>=|\vec{b}| \cos<\vec{a},\vec{b}>+|\vec{c}| \cos<\vec{a},\vec{c}>\]由投影关系可知,显然成立(本质还是坐标法,用余弦定理代入便知)。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-6-28 04:53
Operator Algebra for Geometry Objects
分配律不成立 (r1 ± r2) * m ≠ r1 * m ± r2 * m
结合律不成立 r * m1 * m2 ≠ r * (m1 * m2)
Screenshot 2023-06-27 215020.png 下面是object algebra末段

Setting Brackets

Objects of the same class are mathematical groups with respect to addition and thus allow arbitrary setting of brackets. I.e. the following is always true if a, b and c are all points, rectangles, quads or matrices:

a ± b ± c == (a ± b) ± c == a ± (b ± c)

The set of Matrix objects, with its additional multiplication, is a mathematical ring, which has the (left and right) distributive property:

(m1 ± m2) * m3 == m1 * m3 ± m2 * m3
m1 * (m2 ± m3) == m1 * m2 ± m1 * m3

Care must taken when setting brackets across different geometry classes! If r, r1, r2 are rectangles, λ, λ1, λ2 are numbers and m, m1, m2 are matrices, we have the following:

This is true:

(r1 ± r2) * λ == r1 * λ ± r2 * λ

But (*):

(r1 ± r2) * m ≠ r1 * m ± r2 * m

This is true:

r * m1 * m2 == (r * m1) * m2
r * λ1 * λ2 == (r * λ1) * λ2 == r * (λ1 * λ2)

But (*):

r * m1 * m2 ≠ r * (m1 * m2)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-6-28 04:59

sequence of applying matrices

我对3#有疑问:测试过r * m * n == r * (m * n)没发现问题
Screenshot 2023-06-27 at 22-00-46 object-algebra - Jupyter Notebook.png

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-6-28 12:42
hbghlyj 发表于 2023-6-28 04:59
我对3#有疑问:测试过没发现问题
你需要向我们解释 $\ast$ 是啥, 这看起来是性质很差的运算, 和主题说的向量投影似乎毫无关系.

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit