|
蛋疼的青春
Posted 2016-10-14 13:28
初等解法
Last edited by hbghlyj 2025-5-18 12:02\begin{aligned}
& g(x)=x \ln (x-1)-a(x-2) \\
& g'(x)=\ln (x-1)+\frac{x}{x-1}-a \\
& g''(x)=\frac{x-2}{(x-1)^2} \\
& x>2 \Rightarrow g^{\prime \prime}(x)>0 \Rightarrow g^{\prime}(x) \uparrow \Rightarrow g^{\prime}(x)>2-a \\
& \therefore a \leq 2 \Rightarrow g^{\prime}(x)>0 \Rightarrow g(x) \uparrow \Rightarrow g(x)>g(2)=0 \\
& a>2 \Rightarrow \exists x_0>2, g^{\prime \prime}\left(x_0\right)=0 \Rightarrow x \in\left(2, x_0\right), g^{\prime \prime}(x)<0 \Rightarrow x \in\left(2, x_0\right), g^{\prime}(x)<0 \\
& \Rightarrow x \in\left(2, x_0\right), g(x) \downarrow \Rightarrow g\left(x_0\right)<g(2)=0
\end{aligned} |
|