Forgot password?
 Register account
View 1847|Reply 6

[数列] 求数列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,……的通项

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-9-28 16:33 |Read mode
Last edited by isee 2016-9-30 23:32老论坛的老帖转载过来。

题目:

求通项公式:
1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-9-28 16:38
答(by kuing):

$$a_{n}=\left\lceil \frac{\sqrt{8n+1}-1}{2} \right\rceil.$$

想法很简单,构造一个函数,使得对应每串相同数的最后一个位置,而且单增,然后再向上取整就行了。

具体地,记最后一个$k$在该数列中的第$f(k)$项中,那么$f(1)=1,f(2)=3,f(3)=6$等等,容易求出$$f(k)=\frac{k(k+1)}{2},$$

故我们要构造的是使 $a_{k(k+1)/2}=k$的单增函数(数列),令 $n=k(k+1)/2$,反解出$$k=\frac{\pm\sqrt{8n+1}-1}{2},$$


显然应取正者,然后向上取整,即得$$a_{n}=\left\lceil \frac{\sqrt{8n+1}-1}{2} \right\rceil.$$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-9-28 16:43
老帖二楼的内容就不转了,不过,进一步可以得到在$$\left[\frac{\sqrt{8n+1}-1}{2},\frac{\sqrt{8n-7}+1}{2}\right].$$

内必有惟一整数存在。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-9-28 17:19
此方法可以解决,2003年全国卷压轴题
2003.png

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-10-3 14:08
回复 4# isee


    怎么用啊?

3

Threads

32

Posts

192

Credits

Credits
192

Show all posts

三尺水 Posted 2016-11-12 09:07
应该可以用三角函数或虚数表示准确的通项

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-6-17 10:10
Last edited by 青青子衿 2020-10-16 19:47
  1. Table[Floor[Sqrt[2 i] + 1/2], {i, 10}]
  2. Table[Ceiling[(Sqrt[1 + 8 i] - 1)/2], {i, 10}]
Copy the Code
Mark一下
oeis.org/A002024

数列「1,2,2,3,3,3,...」的通项公式是什么?
zhihu.com/question/25045244/answer/1140740921

Mobile version|Discuz Math Forum

2025-5-31 11:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit