Forgot password
 Register account
View 1756|Reply 3

[几何] 求\(\tan B\times \tan C:\tan C\times \tan A:\tan A\times \tan B\)

[Copy link]

13

Threads

16

Posts

0

Reputation

Show all posts

ta5607 posted 2016-10-31 20:14 |Read mode
Last edited by ta5607 2016-11-21 20:35已知 $G$ 為 $\triangle ABC$ 的重心,$\overline{GA}=5$, $\overline{GB}=6$, $\overline{GC}=7$
求 $\tan B\times \tan C:\tan C\times \tan A:\tan A\times \tan B$

求解.... 無法直接用正弦、餘弦,中線定裡看出有什麼端倪 @@ 求妙解~
擷取.PNG

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-11-1 02:10
设三条中线长为 $m_a$, $m_b$, $m_c$,由中线长公式 $4m_a^2=2(b^2+c^2)-a^2$ 可得
\[\frac94a^2=2(m_b^2+m_c^2)-m_a^2,\]
由条件得 $m_a:m_b:m_c=5:6:7$,则
\[a^2:b^2:c^2=
\bigl(2(6^2+7^2)-5^2\bigr):
\bigl(2(7^2+5^2)-6^2\bigr):
\bigl(2(5^2+6^2)-7^2\bigr)
=145:112:73,\]
所以
\begin{align*}
\tan B\tan C:\tan C\tan A:\tan A\tan B
&=\sin B\sin C\cos A:
\sin C\sin A\cos B:
\sin A\sin B\cos C\\
&=bc\cos A:ca\cos B:ab\cos C\\
&=(b^2+c^2-a^2):
(c^2+a^2-b^2):
(a^2+b^2-c^2)\\
&=(112+73-145):
(73+145-112):
(145+112-73)\\
&=20:53:92.
\end{align*}

PS、我把你的帖子编辑了一下,改进了代码。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2016-11-2 21:49
设三条中线长为 $m_a$, $m_b$, $m_c$,由中线长公式 $4m_a^2=2(b^2+c^2)-a^2$ 可得
\[\frac94a^2=2(m_b^2+m ...
kuing 发表于 2016-11-1 02:10
标题里加了个乘号我反而没看明白(原来是三个积的比)


半夜2点还在解题,可敬。。。。。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-11-2 23:03
回复 3# isee

标题本来就有乘号,我只是加了个 \ 让 $tan$ 变成 $\tan$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:55 GMT+8

Powered by Discuz!

Processed in 0.014376 seconds, 26 queries