Forgot password
 Register account
View 1798|Reply 2

[几何] 一道椭圆的焦点三角形面积问题

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-11-26 18:42 |Read mode
椭圆y^2/3+x^2/2=1,F1,F2是其焦点,P为椭圆上一点,且|PF1|*|PF2|=9/2,求三角形PF1F2的面积————。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2016-11-26 19:58
椭圆y^2/3+x^2/2=1,F1,F2是其焦点,P为椭圆上一点,且|PF1|*|PF2|=9/2,求三角形PF1F2的面积————。
敬畏数学 发表于 2016-11-26 18:42
|PF1|*|PF2| <= (|PF1|+|PF2|)^2/4 = 3,根本不可能等于 9/2

209

Threads

949

Posts

2

Reputation

Show all posts

original poster 敬畏数学 posted 2016-11-26 20:08
回复 2# kuing
答案:设|PF1|=x,|PF2|=y,所求面积=1/2*x*y*sin∠P,根据
余弦定理,算出COS∠P。。。。。竟然答案是根号5.。。。??
此解法的破绽很难察觉啊?开始没有注意,用定义,才发现不可能呵呵。。。。此题编制的也太???

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:56 GMT+8

Powered by Discuz!

Processed in 0.016462 seconds, 22 queries