Forgot password?
 Register account
View 1626|Reply 5

[函数] 请教:又一道两变量 2x^2+y^2+2xy=1,求x^2+y^2的范围

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-11-30 12:22 |Read mode
2x^2+y^2+2xy=1,求x^2+y^2的范围?
用三角换元可以求出。看高手能否用不等式(如均值,柯西等等)解决,谢谢!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-11-30 13:58
均值:\[-\frac{\sqrt5+1}2x^2-\frac2{\sqrt5+1}y^2\leqslant 2xy\leqslant \frac{\sqrt5-1}2x^2+\frac2{\sqrt5-1}y^2,\]下略。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-11-30 14:25
柯西:
令 $z=x+y$,则 $x^2+z^2=1$,且
\[x^2+y^2=x^2+(z-x)^2=\frac12(x^2-z^2)-2xz+\frac32(x^2+z^2),\]
由柯西,有
\[\left( \frac12(x^2-z^2)-2xz \right)^2\leqslant \left( \frac1{2^2}+1^2 \right)\bigl( (x^2-z^2)^2+(-2xz)^2 \bigr)=\frac54(x^2+z^2)^2,\]
所以
\[-\frac{\sqrt5}2+\frac32\leqslant x^2+y^2\leqslant \frac{\sqrt5}2+\frac32,\]
取等略。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2016-11-30 15:28
回复 2# kuing I
I see!THS。学习了。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2016-11-30 15:30
回复 3# kuing
柯西转太快了,只有后续继续学习!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2016-11-30 15:32
回复 5# 敬畏数学
看来此题的系数可以随意,呵呵!太。。。

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit