Forgot password?
 Register account
View 1654|Reply 2

[函数] 比较大小

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-12-9 11:29 |Read mode
f(x)=(x-x1)(x-x2)(x-x3),且x1<x2<x3,函数g(x)=3x+sin(2x+1),设f(x)的两个极值点为m,n(m<n),P=(x1+x2)/2,q=(x2+x3)/2,
比较g(m),g(n),g(p),g(q)的大小。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-12-9 13:40
g(x) 显然在 R 上严格递增,所以是多余的,等价于直接比较 m,n,p,q
因平移不改变结论,可不妨设 x2=0,则 p=x1/2, q=x3/2,易求得 $n,m=(x_1 + x_3 \pm \sqrt{x_1^2 - x_1 x_3 + x_3^2})/3$
则 $p-m=(x_1-2x_3+2\sqrt{x_1^2 - x_1 x_3 + x_3^2})/6$,而 $4(x_1^2 - x_1 x_3 + x_3^2)-(x_1-2x_3)^2=3x_1^2>0$,所以 $p>m$,同理可证 $q<n$,所以 $m<p<q<n$。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2016-12-9 14:34
回复 2# kuing
看来只有硬算。零点式有无再巧些方法?

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit