|
打算就绝对值里的表达式正负分为八类
1.$a^2-2b-2\ge 0,b^2-2c-2\ge0 ,c^2-2a-2\ge0$则得$a>1,b>1,c>1$与$abc\le 1$矛盾.
2.$a^2-2b-2< 0,b^2-2c-2<0 ,c^2-2a-2<0$,则得$a<2,b<2,c<2$,
否则若有某字母,比如$a\ge2$,则$b>2,c>2$与$abc\le1$ 矛盾.
而此时不等式等价于$2a+2b+2c\ge a^2+b^2+c^2$,成立.
3."两正一负",具体操作时,发现哪个负都一样,归为一类.
比如$a^2-2b-2\ge 0,b^2-2c-2\ge0 ,c^2-2a-2<0$
得到$b\ge \sqrt{2} ,a\ge\sqrt{2+2\sqrt{2}},abc\le1,c\le \frac{1}{2\sqrt{2+\sqrt{2}}}$,则得
\[ |a^2-2b-2|+|b^2-2c-2|+|c^2-2a-2|\ge -c^2+2a+2> 6\]
4."两负一正",比如$a^2-2b-2\ge 0,b^2-2c-2<0 ,c^2-2a-2<0$
4.1.当$b\ge\sqrt{2}$时,沿用3.的办法.
4.2.当$1\le b <\sqrt{2}$时,同4.3.2.
4.3.当b<1时,
4.3.1.若$c\ge 2,c^2-2a-2<0$,则$a\ge 2$,
\[ |a^2-2b-2|+|b^2-2c-2|+|c^2-2a-2|\ge a^2-2b-2-b^2+2c+2> 6.\]
4.3.2.若$c\le 2$,
\[ |a^2-2b-2|+|b^2-2c-2|+|c^2-2a-2|\ge -b^2+2c+2-c^2+2a+2\]
\[-b^2+2c+2-c^2+2a+2\ge -b^2+4+2\sqrt{2b+2}>6\]
好歹证明完了.分类讨论暴力流啊~~~. |
|