|
青青子衿
Posted 2018-8-29 18:57
第二题:
利用这个式子:
\[ \int_1^x \big|\,\ln t\,\big|{\rm d}t=x\big|\,\ln x\,\big|-(x-1){\rm sgn}(\ln x)+1\qquad(x\ne 0)\]
\begin{align*}
\int_{1/e}^e \big|\,\ln t\,\big|{\rm d}t
&=\int_1^e \big|\,\ln t\,\big|{\rm d}t+\int_{1/e}^1 \big|\,\ln t\,\big|{\rm d}t\\
&=\int_1^e \big|\,\ln t\,\big|{\rm d}t-\int_1^{1/e} \big|\,\ln t\,\big|{\rm d}t\\
&=e\big|\,\ln e\,\big|-(e-1){\rm sgn}(\ln e)+1-\frac{\big|\,\ln\frac{1}{e}\,\big|}{e}+(\frac{1}{e}-1){\rm sgn}\left(\ln\frac{1}{e}\right)-1\\
&=e-(e-1)-\frac{1}{e}+(1-\frac{1}{e})=2-\frac{2}{e}
\end{align*} |
|