|
Last edited by realnumber 2016-12-27 22:10\[ax^2<\frac{1}{3}\Leftrightarrow x<\sqrt{\frac{1}{3a}}\]
\[(a+1)x<\frac{1}{3}\Leftrightarrow x<\frac{1}{3(a+1)}\]
\[-(a+1)x\ln{x}=(a+1)x\ln{1+\frac{1-x}{x}}<(a+1)(1-x)<\frac{1}{3}\Leftrightarrow x>?\]
最后一行在x=1处放缩,过大,不成功,所以修改在更小的地方$x=\frac{1}{e}$处放缩,并且注意到了次数问题
重新修改为:
\[\ln{\frac{1}{x}}=2\ln{\frac{1}{\sqrt{x}}}=2\ln{(1+\frac{1-\sqrt{ex}}{\sqrt{ex}}})+1<\frac{2}{\sqrt{ex}}-1<\frac{2}{\sqrt{ex}}\]
上一行原本计算有错误,经黄jf老师指出已经修改,
\[-(a+1)x\ln{x}=(a+1)x\ln{\frac{1}{x}}<\frac{2(a+1)\sqrt{x}}{\sqrt{e}}<\frac{1}{3} \Leftrightarrow x<\frac{e^2(a+1)^2}{36}\]
所以当0<x<min{$\sqrt{\frac{1}{3a}},\frac{1}{3(a+1)},\frac{e^2(a+1)^2}{36},\frac{1}{e}$},就能够使得前三项都小于$\frac{1}{3}$. |
|