Forgot password?
 Register account
View 2078|Reply 6

[不等式] 求证一道分式不等式

[Copy link]

5

Threads

10

Posts

77

Credits

Credits
77

Show all posts

绝艺如君 Posted 2016-12-24 09:51 |Read mode
Last edited by 绝艺如君 2016-12-25 16:12三元我已证明,四元及推广是我给出的,还未证明(已验证四元正确).向kuing神请教!

三元 设$a,b,c>0$,证明:$\frac{2}{8 a^2+\text{bc}}+\frac{2}{8 b^2+\text{ca}}+\frac{2}{8 c^2+\text{ab}}+\frac{1}{a^2+b^2+c^2}\geq \frac{3}{\text{ab}+\text{bc}+\text{ca}}$.(我已经用$uvw$证明)

四元 设$a,b,c,d>0$,证明:$\frac{3}{15 a^2+\text{bc}}+\frac{3}{15 b^2+\text{cd}}+\frac{3}{15 c^2+\text{da}}+\frac{3}{15 d^2+\text{ab}}+\frac{1}{a^2+b^2+c^2+d^2}\geq \frac{4}{\text{ab}+\text{bc}+\text{cd}+\text{da}}$.

$n$元 设$
a_i(i=1,2,\ldots ,n)> 0$,规定$a_{n+1}=a_1$,$a_{n+2}=a_2$,证明:$\sum _{i=1}^n \frac{n-1}{\left(n^2-1\right) a_i^2+ a_{i+1}a_{i+2}}+\frac{1}{\sum _{i=1}^n a_i^2}\geq \frac{n}{\sum _{i=1}^n a_i a_{i+1}}$.

5

Threads

10

Posts

77

Credits

Credits
77

Show all posts

 Author| 绝艺如君 Posted 2016-12-24 19:18
有点强

5

Threads

10

Posts

77

Credits

Credits
77

Show all posts

 Author| 绝艺如君 Posted 2016-12-25 11:47
祝大家圣诞快乐啦!!

此贴不要沉啊T T,顶起来,这题是我心里的一个梗。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-12-25 13:47
回复 3# 绝艺如君


    有心无力,不会沉的,放心,本就没多少帖子,这明显是给kuing定制的题,看他了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-12-25 15:35
然而我也没啥头绪,回这帖只是想说:n元分母的下标是不是写错了?

5

Threads

10

Posts

77

Credits

Credits
77

Show all posts

 Author| 绝艺如君 Posted 2016-12-25 16:11
Last edited by 绝艺如君 2016-12-25 16:21回复 5# kuing

已经修改了……
总感觉有好的解决方法

对于三元的,您有好的解法也可以发出来呀:)

5

Threads

10

Posts

77

Credits

Credits
77

Show all posts

 Author| 绝艺如君 Posted 2016-12-25 23:21

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit