Forgot password?
 Create new account
View 2718|Reply 13

[数列] 临川一中高二月考最后一题

[Copy link]

3

Threads

3

Posts

37

Credits

Credits
37

Show all posts

hyperbola98 Posted at 2013-10-16 18:07:43 |Read mode
QQ截图20131016180524.png

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-16 18:13:21
看不懂题目……

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-16 18:16:41
“存在 $n_0\in\mbb N^+$,对任意 $n>n_0$” 是个什么?连语句都不完整……有这样出题的么

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-16 18:22:33
引用人教群里T35说的:
爱好者-Tesla35(3705*****)  17:48:35
看着就蛋疼
逻辑符号本来是为了把问题叙述清楚,这种题反倒是故意让人看不懂

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-16 18:49:41
是不是可以这样理解:
显然$S_n$是一个递增无上界的数列,因此在某一个时刻,会至少存在一个$n_0$使$S_{n_0}\approx2003$,且$S_{n_0}\leqslant2003$,$S_{n_0+1}>2003$,看一下这个最小的$n_0$是多少?
此时,当$n>n_0$时,$S_{n}>2003$
妙不可言,不明其妙,不着一字,各释其妙!

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2013-10-16 20:55:35
回复 4# kuing


   

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-10-17 00:57:53
是不是可以这样理解:
显然$S_n$是一个递增无上界的数列,因此在某一个时刻,会至少存在一个$n_0$使$S_{n_0 ...
其妙 发表于 2013-10-16 18:49
要按这个说法,这题是纯粹拿人开涮吧......
那个$n_0$起码都是$e^{2013}$到$e^{2014}$数量级的东西...要精确到个位...尼玛即便给你答案你要抄上这个数都是个不小的挑战

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-10-17 01:20:38
要按这个说法,这题是纯粹拿人开涮吧......
那个$n_0$起码都是$e^{2013}$到$e^{2014}$数量级的东西...要 ...
战巡 发表于 2013-10-17 00:57

好吧...刚刚算了一下,这货的精确值是
\[n_0\ge [e^{2013+\frac{3}{2}-c}]-1\]
其中$c=0.57721566...$为欧拉常数
具体值嘛...
43206811278115161308539729570519201124917732252615386847756490637291809769292466540505879171230705292169232561951995074648852145730605812112178045407128111746802912082073691936270992323951523988782506595057060848249179921664062574517683955990906908800289646595576614840208874150311635258708797623652542901919054331375962841100975290542842232275977069331010034373908229983832094025495537118953316556822208812968440741861632043877772295888927607978404415170833841359589414860448292525599721486231926190646753096452827562208461283219262823159933737730881201044541296923907637570491361874821311749698353667926639260191924825104194635271568077124397299720086296312410299195608589723837916873586650739601655388953758998714880976470084652918690061787384844619589686151296585478045463894168178559181824696950039711113538724813403444620217588006315638491967083345526409532957863751722

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-17 01:26:39
回复 8# 战巡


反正这题太奇(jī)葩(bā)了

3

Threads

3

Posts

37

Credits

Credits
37

Show all posts

 Author| hyperbola98 Posted at 2013-10-17 04:22:12
谢谢各位了,本题是学完逻辑这一章后出的题,是一道文科压轴题,我拿到题目但没拿到答案。我认为本题相当于 QQ截图20131017040627.png ,但1/(n+2)求和在大学可利用欧拉公式,在高中我可真没办法,真不知道临川一中的老师是怎样出出这道题的,也不知是怎样对学生讲的。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-17 08:52:59
要按这个说法,这题是纯粹拿人开涮吧......
那个$n_0$起码都是$e^{2013}$到$e^{2014}$数量级的东西...要 ...
战巡 发表于 2013-10-17 00:57
即便给你答案你要抄上这个数都是个不小的挑战

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-18 09:31:04
这题在楼主所说的考试学校有后话么?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-18 10:20:52
但愿这只是因为题目在传播的时候录入错误所致,否则,这实在是太糟糕了,又一个极为失败的题。

3

Threads

3

Posts

37

Credits

Credits
37

Show all posts

 Author| hyperbola98 Posted at 2013-10-18 11:18:04
那题没讲,说超过范围了

手机版Mobile version|Leisure Math Forum

2025-4-21 14:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list