Forgot password
 Register account
View 1839|Reply 2

[几何] 动圆C与x轴相切且被y=x截得的弦长为定值2,求圆心C的轨迹

[Copy link]

32

Threads

55

Posts

0

Reputation

Show all posts

天音 posted 2017-1-1 23:07 |Read mode
如题,代数解法很简单,不知有没有几何解法?因为结果好像是旋转了的反比例函数来着

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-1-2 14:49
几何解法暂时没想到,倒是想到了推广:

命题:两条相交直线被一动圆所截的两段弦长为不相等的定值,则动圆圆心的轨迹为等轴双曲线。

(注:1楼的题可视为上述命题当其中一个定值为零的特例)

证明:建系使两直线方程为 $y=\pm kx$($k\ne0$),被动圆所截的两段弦长分别 $2m$, $2n$($m\ne n$),设圆心为 $(x,y)$,则由点到直线距离公式及勾股定理,有
\[\left( \frac{\abs{kx-y}}{\sqrt{k^2+1}} \right)^2+m^2=\left( \frac{\abs{kx+y}}{\sqrt{k^2+1}} \right)^2+n^2,\]
化简即为
\[xy=\frac{(m^2-n^2)(k^2+1)}{2k},\]
所以为等轴双曲线。

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2017-10-31 05:49
211.png
如图:\[ OC=\sqrt{y^2-1}, (y\geqslant \sqrt{2})\\OB=\sqrt{2y^2-2}\\x=y+\sqrt{2y^2-2}\]即\[ x^2-2xy-y^2+2=0 \]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:15 GMT+8

Powered by Discuz!

Processed in 0.013758 seconds, 25 queries