Forgot password?
 Register account
View 1910|Reply 2

[不等式] 已知$a,x,y>0,xy=1$,求证$xa^y+ya^x\ge2a$

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2017-1-1 23:48 |Read mode
如题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-1-2 16:18
若 $a\geqslant1$,则由均值得
\[xa^y+ya^x\geqslant 2\sqrt{xya^{x+y}}\geqslant 2\sqrt{xya^{2\sqrt{xy}}}=2a;\]

若 $0<a<1$,则由加权均值不等式有
\[\frac x{x+y}a^y+\frac y{x+y}a^x\geqslant a^{\frac{2xy}{x+y}}\geqslant a^{\frac{2xy}{2\sqrt{xy}}}=a,\]
所以
\[xa^y+ya^x\geqslant (x+y)a\geqslant 2\sqrt{xy}a=2a.\]

综上,得证。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2017-1-2 17:58
回复 2# kuing


    我想用导数好久都没做出来,你两三下均值就出来了,佩服

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit