Forgot password
 Register account
View 1745|Reply 7

[函数] 求参

[Copy link]

13

Threads

28

Posts

0

Reputation

Show all posts

caesarxiu posted 2017-1-5 00:36 |Read mode
Last edited by caesarxiu 2017-1-6 23:15设函数$f(x)=xe^x-ax+a$,若存在唯一的整数$x_0$,使得$f(x_0)<0$则实数$a$的取值范围为_____

答案是$\dfrac{2}{3e^2}\leqslant a<\dfrac{1}{2e}或2e^2<a\leqslant\dfrac{3e^3}{2}$,
前一个范围我到知道,但是后面那个范围是怎么求到的?

2

Threads

16

Posts

0

Reputation

Show all posts

陈习晖 posted 2017-1-6 14:24
回复 1# caesarxiu
会不会抄写题目时出了问题啊?

13

Threads

28

Posts

0

Reputation

Show all posts

original poster caesarxiu posted 2017-1-6 23:18
谢谢指出,现在已经更正回来了!(我就纳闷为什么没有人来接题嘞)

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2017-1-7 20:33
\[f(2)=2e^2-a,f(3)=2(\frac{3e^3}{2}-a),f(4)=3(\frac{4e^4}{3}-a)\]
\[f(1)=e>0,f(0)=a\]
\[f(-1)=-2(\frac{e^{-1}}{2}-a),f(-2)=-3(\frac{2e^{-2}}{3}-a),f(-3)=-4(\frac{3e^{-3}}{4}-a)\]
当a<0时,f(0)<0,f(-1)<0不合题意.
当$a\ge 0$时,注意到$f(2)<\frac{f(3)}{2}<\frac{f(4)}{3}<\cdots$,只能是f(2)<0,$f(3)\ge0$.
...f(-1),f(-2),f(-3)那里也类似吧.

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2017-1-7 21:53
发现你的好几个帖子都是00:00后发的.

13

Threads

28

Posts

0

Reputation

Show all posts

original poster caesarxiu posted 2017-1-9 00:20
回复 4# realnumber
看你解得挺顺畅的,你应该是大学教授吧,我也希望有像你一样的思维!
我是通过构造函数$f(x)=xe^x$,$h(x)=ax-a$来做的,却只做出了一个范围。

13

Threads

28

Posts

0

Reputation

Show all posts

original poster caesarxiu posted 2017-1-9 00:24
回复 5# realnumber
高三,你懂得。

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2017-1-9 07:31
普通高中数学教师

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:02 GMT+8

Powered by Discuz!

Processed in 0.013318 seconds, 23 queries