Forgot password?
 Register account
View 1906|Reply 6

[函数] 二次函数,取值范围

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2017-1-11 23:19 |Read mode
请各位指点,谢谢
2017-01-11 23.07.41.jpg

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-1-12 10:48
回复 1# lrh2006


    哪位高手出来指点下啊?我想用几何画板画个图,结果抛物线也画不出来。抛物线过(0,0)(1,1)时,M=0,抛物线过(1,-1)(-1,0)时,M=-25/16.答案是A.我想知道为什么是这些情况下取到最值。先谢谢大家啦

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-1-12 13:17
其实你已经得到答案啦!哈哈。我再啰嗦下。所求抛物线由y=x^2平移所得,首先看y=x^2上下移动,最小值M的最大值情形,只有y=x^2经过(1,1),此时x=0符合题意。再看最小M的最小值情形,注意f(1)>=-1,若f(1)=-1时,此时y=x^2-2零点(-根号2)不合题意。只能右移再上移动,使得图像过(-1,0)及(1,-1)此时得到y=(x-1/4)^2-25/16.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-1-12 13:58
回复 3# 敬畏数学


    鼓掌....

2

Threads

8

Posts

75

Credits

Credits
75

Show all posts

xugaosong Posted 2017-1-12 14:41
回复 2# lrh2006

先确定$b$,$c$满足的约束条件,然后求$z=\dfrac{4c-b^2}{4}$的取值范围.
QQ图片20170112144200.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-1-12 16:01
代数解法也很简单啊。

依题意可设 $f(x)=(x-x_1)(x-x_2)$, $x_1\in [-1,0]$,则
\begin{align*}
\abs{f(1)}=(1-x_1)\abs{1-x_2}\leqslant 1
&\iff \abs{1-x_2}\leqslant \frac1{1-x_1} \\
&\iff 1-\frac1{1-x_1}\leqslant x_2\leqslant 1+\frac1{1-x_1},
\end{align*}

\[M=f\left( \frac{x_1+x_2}2 \right)=-\frac14(x_1-x_2)^2,\]
因为
\[1-\frac1{1-x_1}-x_1=\frac{-x_1(2-x_1)}{1-x_1}\geqslant 0,\]
故 $x_2\geqslant x_1$,等号成立时 $x_1=x_2=0$,所以 $M_{\max}=0$,且
\[2\sqrt{-M}=x_2-x_1\leqslant 1+\frac1{1-x_1}-x_1=t+\frac1t,\]
其中 $t=1-x_1\in [1,2]$,所以
\[2\sqrt{-M}\leqslant 2+\frac12=\frac52
\riff M\geqslant -\frac{25}{16},\]
当 $x_1=-1$, $x_2=3/2$ 时取等,所以范围就是 $[-25/16,0]$。

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-1-12 23:21
谢谢楼上各位的帮助,豁然开朗,多谢

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit