Forgot password?
 Register account
View 1606|Reply 2

[函数] 求证函数最大在x=1处

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-1-21 09:05 |Read mode
求$y=(x-x^2+4)(x^2+3x)=-x^4-2x^3+7x^2+12x  ,(x\le 1)$的最大值.


几何画板显示x=1最大,怎么证明?我的办法太琐碎,也许还不自然
求导$y'=-4x^3-6x^2+14x+12$,$0\le x\le1$递增,

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-1-21 09:21
Last edited by realnumber 2017-1-21 09:28想到一个办法了
要证明$-x^4-2x^3+7x^2+12x\le 16,(x\le1)$
即要证明$0\le (x^4-1)+(2x^3-2)+(7-7x^2)+(12-12x)$
即$0\le (x-1)(x^3+x2+x+1+2(x^2+x+1)-7(x+1)-12)=(x-1)(x^3+3x^2-4x-16)$
如此只需要证明$x^3+3x^2-4x-16\le 0,x\le1$.而这个已经是3次函数了.
一个要点就是多项式函数$f(x)$,那么$f(x_1)-f(x_1)$有因式$x_1-x_2$.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-1-21 10:56
继续1楼的做法,接下来证明$x^4+2x^3-7x^2-12x+16>0,x<0$.
x用-x替换,即要证明x>0时,$x^4+12x+16>2x^3+7x^2$.
只要证明$\frac{x^4}{3}+\frac{x^4}{3}+9x\ge 3x^3,\frac{x^4}{3}+3x+x^3+16\ge 8x^2$.这两个都成立.
 
只用课本的那个$a+b\ge 2\sqrt{ab},a>0,b>0$如下,
$12x+3x^3\ge 12x^2,x^4+9x^2\ge 6x^3,x^3+16x\ge 8x^2,4x^2+16\ge 16x$,这些相加得到上面的成立.完.0<x<1也可以用基本不等式凑,类似,不再写.

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit