Forgot password?
 Register account
View 2224|Reply 8

[函数] 三角最值怎么求?

[Copy link]

12

Threads

10

Posts

131

Credits

Credits
131

Show all posts

957683999 Posted 2017-1-22 14:48 |Read mode
Last edited by hbghlyj 2025-4-23 11:01已知 $x\in\left[0, \frac{\pi}{3}\right]$ 求函数 $f(x)=\frac{\sin x}{\sin \left(\frac{3}{4} \pi-x\right)}+\frac{\sin \left(\frac{\pi}{3}-x\right)}{\sin \left(\frac{5 \pi}{12}+x\right)}$ 的最大值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-1-22 15:50
由积化和差有
\begin{align*}
&\sin x\sin \left( \frac{5\pi }{12}+x \right)
+\sin \left( \frac\pi3-x \right)\sin \left( \frac{3\pi }4-x \right)\\
={}&\frac12\left( \cos \frac{5\pi }{12}-\cos \left( \frac{5\pi }{12}+2x \right) \right)
+\frac12\left( \cos \frac{5\pi }{12}-\cos \left( \frac{13\pi }{12}-2x \right) \right) \\
={}&\sin \frac\pi{12}-\frac12\sin \left( \frac\pi{12}-2x \right)
+\frac12\cos \left( \frac\pi{12}-2x \right)\\
={}&\frac{\sqrt6-\sqrt2}4-\frac{\sqrt2}2\cos \left( \frac\pi3-2x \right),
\end{align*}

\[
\sin \left( \frac{3\pi }4-x \right)\sin \left( \frac{5\pi }{12}+x \right)
=\frac12\left( \cos \left( \frac\pi3-2x \right)+\frac{\sqrt3}{2} \right),
\]
故令 $t=\cos(\pi/3-2x)\in[1/2,1]$,则
\[f(x)=\frac{\sqrt6-\sqrt2+2\sqrt2t}{2t+\sqrt3}
=\sqrt2-\frac{\sqrt2}{2t+\sqrt3}
\in\left[\frac{\sqrt6}{1+\sqrt3},\frac{\sqrt6+\sqrt2}{2+\sqrt3}\right]
=\left[\frac{3\sqrt2-\sqrt6}2,\sqrt6-\sqrt2\right].\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-1-22 15:57
话说,我感觉这题是从平面几何题变出来的样子……

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-2-22 14:34
jdfw.gif

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-2-22 16:31
3,4楼结合一看,就是某年福建文科某道高题。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-2-22 17:35
回复 4# 游客

果然!

5

Threads

10

Posts

77

Credits

Credits
77

Show all posts

绝艺如君 Posted 2017-2-22 21:17
回复 4# 游客

这题太经典了,方法很多。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-2-22 22:31
嗯,就是这个:forum.php?mod=viewthread&tid=44

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-2-25 23:28
回复 8# kuing

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit