Forgot password?
 Register account
View 1608|Reply 4

[数列] 这个数列如何放缩好?

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-2-22 14:07 |Read mode
已知数列{$a_n$}满足:$a_1=\dfrac{1}{2}$,$(n+1)a_{n+1}$=$na_n+a_n^2$,求证:$na_n\leqslant \dfrac{7}{4}$.
天灵灵地灵灵,大神快点来出现!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-2-22 17:37
这个帖 forum.php?mod=viewthread&tid=2554 里面3楼的结果应该可以用

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-2-22 18:58
回复 2# kuing


    形同但变形难,沿扎克指的这个路走不下去。请大神具体具体更具体。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2017-2-23 03:03
令$b_n=na_n$,由于
\[b_{n+1}=b_n+\frac{b_n^2}{n^2}>b_n\]
可知$b_n$递增,有
\[b_{n+1}<b_n+\frac{b_nb_{n+1}}{n^2}\]
\[\frac{1}{b_n}-\frac{1}{b_{n+1}}<\frac{1}{n^2}\]
\[2-\frac{1}{b_n}<\sum_{k=1}^{n-1}\frac{1}{k^2}<\frac{\pi^2}{6}\]
\[b_n<\frac{1}{2-\frac{\pi^2}{6}}\approx 2.8164\]
这样看来从第一项就开始似乎太夸张,从第二项开始好了,易证$b_2=\frac{3}{4}$有
\[\frac{4}{3}-\frac{1}{b_n}<\frac{\pi^2}{6}-1\]
\[b_n<\frac{6}{14-\pi^2}\approx 1.45<\frac{7}{4}\]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-2-24 07:13
回复 4# 战巡

巡巡的方法好!可惜对弱渣来说,没有这么多知识贮备量。

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit