|
战巡
Posted 2017-2-23 03:03
令$b_n=na_n$,由于
\[b_{n+1}=b_n+\frac{b_n^2}{n^2}>b_n\]
可知$b_n$递增,有
\[b_{n+1}<b_n+\frac{b_nb_{n+1}}{n^2}\]
\[\frac{1}{b_n}-\frac{1}{b_{n+1}}<\frac{1}{n^2}\]
\[2-\frac{1}{b_n}<\sum_{k=1}^{n-1}\frac{1}{k^2}<\frac{\pi^2}{6}\]
\[b_n<\frac{1}{2-\frac{\pi^2}{6}}\approx 2.8164\]
这样看来从第一项就开始似乎太夸张,从第二项开始好了,易证$b_2=\frac{3}{4}$有
\[\frac{4}{3}-\frac{1}{b_n}<\frac{\pi^2}{6}-1\]
\[b_n<\frac{6}{14-\pi^2}\approx 1.45<\frac{7}{4}\] |
|