Forgot password?
 Register account
View 3024|Reply 8

[函数] 求一个函数最值 $(1+\frac1x)^x+(1+x)^{\frac1x}$

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted 2017-3-4 16:33 |Read mode
QQ图片20170304163443.png
答案都知道是4,缺少严格的证明

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-3-7 10:45
Last edited by realnumber 2017-3-7 10:51$g(x)=g(\frac{1}{x})$,只需要考虑$x\ge1$或$0<x\le 1$
导数好复杂,没找到头绪...
觉得会不会把伯努利不等式推广下?比如展开保留更多的项?x=1要取等,展开的话,也该在x=1处

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-3-7 14:10
QQ截图20170307140655uuu.jpg
试着切线法,用了2个数据简单的,都失败了
$g(x)\le  s(x),g(x)\le r(x)$,但放缩过度,x=1处,s(x),r(x)变最小值了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-3-8 00:49
突然灵感一来想到一个菊部。

令 $f(x)=(1+x)^{1+1/x}$, $x>0$,经过一番计算,可得其二阶导数为
\[f''(x)=(1+x)^{1+1/x}\cdot\frac{(1+x)\ln^2(1+x)-x^2}{x^4},\]
易证对任意 $x>0$ 恒有
\[\ln(1+x)<\frac x{\sqrt{1+x}}\riff f''(x)<0,\]
即 $f(x)$ 为上凸函数,因此它必恒不大于它的任一条切线,经过计算可知 $f(x)$ 在 $x=1$ 处的切线方程为 $y=4(1-\ln 2)(x-1)+4$,因此我们有
\[(1+x)^{1+1/x}\leqslant 4(1-\ln 2)(x-1)+4,\]
两边除以 $1+x$ 整理即得如下菊部不等式
\[(1+x)^{1/x}\leqslant 4(2\ln 2-1)\cdot \frac1{1+x}+4(1-\ln 2),\]
作置换 $x\to1/x$,也有
\[\left( 1+\frac1x \right)^x\leqslant 4(2\ln 2-1)\cdot \frac x{1+x}+4(1-\ln 2),\]
两式相加,即得
\[(1+x)^{1/x}+\left( 1+\frac1x \right)^x\leqslant 4(2\ln 2-1)+8(1-\ln 2)=4.\]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted 2017-3-8 09:41
学习了,不愧是大神kuing,可否看下我那个极值点偏移问题,和以往的极值偏移有些不一样,谢谢!

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-3-9 20:33
回复 4# kuing
Orz,太漂亮了!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-10-1 11:11
4楼第一步有笔误,二阶导数那里第一项的指数里没有 1+ ,即应该改为:
\[f''(x)=(1+x)^{1/x}\cdot\frac{(1+x)\ln^2(1+x)-x^2}{x^4},\]
后面不用改。
(感谢网友 TSC999 的指出)

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-10-1 11:36
回复 7# kuing
治学严谨!

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-8-14 06:10
artofproblemsolving.com/community/c6h1651476p10446396
TuZo, May 31, 2018, 10:51 AM
Hint If $g(x)=f(x)+f\left(\frac{1}{x}\right)$ which $f(x)=(1+x)^{\frac{1}{x}}$, we have $g'(x)=f'(x)-\frac{1}{x^{2}}f'\left(\frac{1}{x}\right)$ so $g'(1)=0,$ and we can prove that $x=1$ is maximum point for the function $g(x)$, and $g(1)=4$.
artofproblemsolving.com/community/c6h1786808p12174073
Problem: Prove that $(1+x)^{1/x} + (1+1/x)^x \le 4$ for $x>0$.
Solution: Write the inequality as $$\frac{1}{1+x}(1+x)^{1+1/x} + \frac{x}{1+x}(1+1/x)^{1+x} \le 4.$$It is not difficult to prove that $f(x)=(1+x)^{1+1/x}, x > 0$ is concave. Thus, by letting $t = \frac{x}{1+x},$ we have $t f(1/x) + (1-t)f(x) \le f(t\frac{1}{x} + (1-t)x) = f(1) = 4$. We are done.
artofproblemsolving.com/community/c6h2124822p15485696
$f(x) = (1+x)^{1+1/x}$ is concave for x>0

$f(x)/(x+1) + (xf(1/x))/(x+1) \leq 4 \frac{(1-\ln 2) x+\ln 2}{x+1}+4 \frac{(x-1) \ln 2+1}{x+1}=4 $
artofproblemsolving.com/community/c6h1751571p11419423
math.stackexchange.com/questions/2899031
math.stackexchange.com/questions/2802904
math.stackexchange.com/questions/3777746

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit