Forgot password?
 Register account
View 2265|Reply 6

[函数] 这个值为什么这样取?怎么想到的?

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-3-12 20:10 |Read mode
已知a为实常数,函数$f(x)=lnx-ax+1$有两个不同的零点$x_1,x_2(x1<x2)$.
(ⅰ)求实数a的取值范围;
  (ⅱ)求证:$\dfrac{1}{e}<x_1<1$,且$x_1+x_2>2$.
请看(i)的解答:当a≤0时,函数f(x)在(0,+∞)上是增函数,不可能有两个零点,

当a>0时,f(x)在$(0,\dfrac{1}{a})$上是增函数,在$(\dfrac{1}{a},+∞)$上是减函数,此时$f(\dfrac{1}{a})$为函数f(x)的最大值,

当f(1/a)≤0时,f(x)最多有一个零点,∴f(1/a)=-lna>0,解得0<a<1,

此时,1/e<1/a<$\dfrac{e^2}{a^2}$,且f(1/e)=-a/e<0,

$f(\dfrac{e^2}{a^2})=3-2lna-\dfrac{e^2}{a^2}(0<a<1)$,
求教各位大侠,这个$\dfrac{e^2}{a^2}$是怎么想到的?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-3-22 09:02
Last edited by 力工 2017-3-26 11:00再来一题:若非负数a、b、c、d满足(a + c)(b + d)=1,
则$\dfrac{3}{a^2-bc+4}+\dfrac{3}{b^2-cd+4}+\dfrac{3}{c^2-da+4}+\dfrac{3}{d^2-ab+4}\leqslant 4$

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-3-22 10:53
回复 2# 力工

你确定没抄错题?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-3-26 11:00
回复 3# 色k

好机智的kuing,确实是错的。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-3-26 22:54
回复 4# 力工

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-4-11 07:14
已知$a,b,c$为非负数,求$\dfrac{(a-b)(b-c)(c-a)}{a^3+b^3+c^3-3abc}$的最大值。
最大值是$\dfrac{\sqrt{2\sqrt{3}-3}}{3}$
但怎么求呢?没个思路
@色k,@各位大神!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-4-11 08:43
已知$a,b,c$为非负数,求$\dfrac{(a-b)(b-c)(c-a)}{a^3+b^3+c^3-3abc}$的最大值。
最大值是$\dfrac{\sqrt{2 ...
力工 发表于 2017-4-11 07:14
参见《撸题集》第 467 页题目 4.6.46。

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit