Forgot password?
 Register account
View 2144|Reply 8

[几何] 请教一道解析几何

[Copy link]

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

caesarxiu Posted 2017-3-19 23:12 |Read mode
这是我做的答案,(第二问!!)但不知道哪里错了,恳请指点。

QQ图片20170319223728.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-3-19 23:15
看不清

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-3-19 23:39
Last edited by caesarxiu 2017-3-19 23:45回复 2# kuing
题目应该看得清,我就写解答。
设椭圆上一点$P(t,v)$
$P$点处的切线方程为$y=-\dfrac{t}{4v}x+\frac{1}{v}$
有光学性质可知$K_{PM}=\dfrac{4v}{t}$
所以$PM$所在的直线为
$\displaystyle y=\frac{4v}{t}(x-t)+v$
$\displaystyle =\frac{4v}{t}(x+v-t)$
所以$m=t-v$
$\dfrac{t^2}{4}+v^2=1 \rightarrow$
$\begin{cases}
t=2\sin\theta\\
v=\cos\theta\end{cases}$$\rightarrow$
$m=\sqrt{5}\sin(\theta-\phi)$   
所以$m$的取值范围为 $[-\sqrt{5},\sqrt{5}]$                                               
呼~总算完了,打代码要累死宝宝了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-3-19 23:46
$\displaystyle \frac{4v}{t}(x-t)+v=\frac{4v}{t}(x+v-t)$ 这里怎么变粗来的?

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-3-19 23:54
回复 4# kuing

$\displaystyle y=\frac{4v}{t}(x-t)+v$
$\displaystyle =\frac{4v}{t}x+\frac{4v^2}{t}-4v$
$\displaystyle =\frac{4v}{t}(x+v-t)$
就是先去括号结合后再重新分配,以得到函数和x轴的交点的横坐标。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-3-19 23:59
回复 5# caesarxiu

去括号难道不是 $=\dfrac{4v}tx-3v$ 咩?

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-3-20 00:04
回复 6# kuing

丢死脸了,我居然错误的重复算了3遍,
谢谢了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-3-20 00:08
回复 7# caesarxiu



不过其实为啥不用角平分线定理,瞬间搞定啊

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

 Author| caesarxiu Posted 2017-3-20 00:24
回复 8# kuing

哦~对应边成比例,bingo
就怕解答题太快了,没什么占答题卡空间

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit