Forgot password?
 Register account
View 2093|Reply 6

[不等式] 数列不等式

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2017-3-22 23:24 |Read mode
第(2)小题不用数学归纳法怎么证明,各位可以支支招吗
NMK$PBINYAV{PZU3Q~D8D2P.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2017-3-23 02:13
回复 1# lrh2006

易证
\[b_n=2n-1\]
由于
\[\sum_{k=1}^n\ln(1+\frac{1}{2k-1})>\sum_{k=1}^n\frac{1}{2k}>\frac{1}{2}\int_1^{n+1}\frac{dx}{x}=\frac{1}{2}\ln(n+1)\]

\[\sum_{k=1}^n\ln(\frac{2k}{2k-1})>\frac{1}{2}\ln(n+1)\]
\[\prod_{k=1}^n\frac{2k}{2k-1}>\sqrt{n+1}\]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-3-24 00:01
回复 2# 战巡


    要用到微积分啊,有没有低级的方法?谢谢

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-3-25 19:01
记$A=2\frac{4}{3}\frac{6}{5}...\frac{2n}{2n-1}$
$\frac{2k}{2k-1}>\frac{2k+1}{2k}$
$(\frac{A}{2})^2=(\frac{4}{3}\frac{6}{5}...\frac{2n}{2n-1})^2>(\frac{4}{3}\frac{6}{5}...\frac{2n}{2n-1})(\frac{5}{4}\frac{7}{6}...\frac{2n+1}{2n})=\frac{2n+1}{3}>\frac{n+1}{2}$
大概就这样

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-3-26 18:20
回复 4# realnumber


    嗯嗯,多谢多谢!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-3-26 22:40
这不是糖水不等式?
还可以用n=2的贝努利放缩吧?
也等价于用数学归纳法证明
还可以构造单调数列证明

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-3-29 09:59
Last edited by 游客 2017-3-29 10:15\[b_n=2n-1?\]

\[\frac{2n+1}{2n}>\sqrt\frac{n+1}{n}\]

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit