|
战巡
Posted 2017-3-23 02:13
回复 1# lrh2006
易证
\[b_n=2n-1\]
由于
\[\sum_{k=1}^n\ln(1+\frac{1}{2k-1})>\sum_{k=1}^n\frac{1}{2k}>\frac{1}{2}\int_1^{n+1}\frac{dx}{x}=\frac{1}{2}\ln(n+1)\]
有
\[\sum_{k=1}^n\ln(\frac{2k}{2k-1})>\frac{1}{2}\ln(n+1)\]
\[\prod_{k=1}^n\frac{2k}{2k-1}>\sqrt{n+1}\] |
|