Forgot password
 Register account
View 2161|Reply 8

[数列] 教学一个盲点,关于数列一题$a_n=pa_{n-1}+q$

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2017-3-24 21:37 |Read mode
如$a_n=2a_{n-1}+1,a_1=1$,
习惯上的办法是待定系数法,记起以前同事王提到过的办法
上式n用n-1代换,相减得到数列{$a_n-a_{n-1}$}为等比数列,
推广问题$a_n=2a_{n-1}+n+1,a_1=1$,
$a_n=2a_{n-1}+3n^2+4n+1,a_1=1$等都可以依次沿用这个办法。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-3-24 23:15
必讲内容啊,稍统一一点的考试都考。。。。。。
kuing 在首期数学空间上也小结过。。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-3-24 23:18
回复 2# isee

难得有人记得我在《憋间》写的东东

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-3-25 00:08
回复 3# kuing


    实话说,散见n次,但系统学习的,便是那个微型整理了,很精彩,过目难忘

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2017-3-25 01:16
Last edited by 战巡 2017-3-25 01:30回复 1# realnumber

更简单的办法是这样
\[a_n=2a_{n-1}+1\]
\[\frac{a_n}{2^n}-\frac{a_{n-1}}{2^{n-1}}=\frac{1}{2^n}\]
\[\frac{a_n}{2^n}=a_1+\sum_{k=1}^n\frac{1}{2^k}\]a_
同理
\[a_n=2a_{n-1}+3n^2+4n+1\]
\[\frac{a_n}{2^n}-\frac{a_{n-1}}{2^{n-1}}=\frac{3n^2+4n+1}{2^n}\]
\[\frac{a_n}{2^n}=1+\sum_{k=1}^n\frac{3k^2+4k+1}{2^k}\]

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2017-3-25 07:49
o ,谢谢

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2017-3-25 10:05
其实就是线性差分方程,$a_n-pa_{n-1}=q$,当$p\neq1$时通解是$Cp^t+\frac{q}{1-p}$,代入初值算出常数$C$就可以了,如果$q$是一般的$f(t)$,最后是加上一个特解。

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2017-3-25 12:58
鼓掌~~~,高手们看过就不一样.

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-3-26 22:59
其实就是线性差分方程,$a_n-pa_{n-1}=q$,当$p\neq1$时通解是$Cp^t+\frac{q}{1-p}$,代入初值算出常数$C$ ...
abababa 发表于 2017-3-25 10:05
作差以后,变成$a_{n+1}=sa_n+ta_{n-1}$类型的,其中有一个特征根为1,自然可用待定系数法来解了,
当然,最简单的就是不动点法了,

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:17 GMT+8

Powered by Discuz!

Processed in 0.013746 seconds, 23 queries