Forgot password
 Register account
View 2370|Reply 4

[数列] 求数列的通项引发的问题

[Copy link]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-18 18:29 |Read mode
blog图片博客.jpg

这是别人提出的问题。
妙不可言,不明其妙,不着一字,各释其妙!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-10-20 23:02
我记得这好像是早年IMO的试题:blog.sina.com.cn/s/blog_5618e6650101nl4b.html

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2013-10-20 23:26
回复 2# Tesla35
数列控,这个你lu没有?
妙不可言,不明其妙,不着一字,各释其妙!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-10-20 23:29
回复 3# 其妙


    lu多了有些伤身。得缓缓

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-21 00:26
设 $f(x)=(2^x+2^{-x})/2$,令 $u_n=2f(b_n)$,注意到 $f(x)$ 与 $\cosh x$ 有类似的性质,故代入递推式得
\begin{align*}
2f(b_n)&=2f(b_{n-1})\bigl(4f(b_{n-2})^2-2\bigr)-2f(b_1) \\
&=4f(b_{n-1})f(2b_{n-2})-2f(b_1) \\
&=2f(b_{n-1}+2b_{n-2})+2f(b_{n-1}-2b_{n-2})-2f(b_1),
\end{align*}

\[f(b_n)+f(b_1)=f(b_{n-1}+2b_{n-2})+f(b_{n-1}-2b_{n-2}),\qquad(*)\]
若令 $b_n=b_{n-1}+2b_{n-2}$,解得
\[b_n=\frac13\bigl((-1)^n(2b_0-b_1)+2^n(b_0+b_1)\bigr),\]
而当 $b_0=0$ 且 $b_1=1$ 时恰好能使上述通项满足 $\abs{b_{n-1}-2b_{n-2}}=b_1$,所以此时的 $b_n$ 就是满足 (*) 的一个解(只要一个就够了),将它代回 $u_n$ 就是所求通项。
了解这一点后,大概就能仿着制作类似的题……

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:43 GMT+8

Powered by Discuz!

Processed in 0.012731 seconds, 25 queries