Forgot password
 Register account
View 1836|Reply 2

[数列] 请教一个数列放缩的题

[Copy link]

14

Threads

39

Posts

0

Reputation

Show all posts

joatbmon posted 2017-4-21 12:04 |Read mode
$a_1=1,a_{n+1}a_n=\dfrac{1}{n}$
求证:
$(1)\dfrac{a_{n+2}}{n}=\dfrac{a_n}{n+1}\\
(2)2(\sqrt{n+1}-1)\leqslant \dfrac{1}{2a_3}+\cdots+\dfrac{1}{(n+1)a_{n+2}}\leqslant n$
我想不出来,死在一个根号2上了

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2017-4-21 16:04
首先在$a_{n+1}a_n=\frac{1}{n}$中将$n$替换为$n+1$得$a_{n+2}a_{n}=\frac{1}{n+1}$,这两式相除即得
\[ \frac{a_{n+2}}{n} = \frac{a_n}{n+1} \]
第一问得证。
第二问,通项
\[ \frac{1}{(k+1)a_{k+2}} = \frac{1}{ka_k} = a_{k+1} \]
所以只是要证明下式
\[ 2(\sqrt{n+1}-1) \leqslant a_2+a_3+\cdots+a_{n+1} \leqslant n \]
这只要能证明下面这个估计就能办到($n>1$)
\[ 2(\sqrt{n}-\sqrt{n-1}) \leqslant a_n \leqslant 1 \]
用数列归纳法试了一下,递推存在一点困难,倒是证明更强的放缩容易些($n>1$)
\[ \frac{1}{\sqrt{n-1}} \leqslant a_n \leqslant 1 \]
以下就来数列归纳法吧,计算得$a_2=1$,$a_3=\frac{1}{2}$,都符号这不等式,于是假定$a_n$满足这不等式,来看$a_{n+2}$的情况:
\[ a_{n+2} = \frac{n}{n+1}a_n < a_n \leqslant 1 \]
同时
\[ a_{n+2} = \frac{n}{n+1}a_n \geqslant \frac{n}{n+1} \cdot \frac{1}{\sqrt{n-1}} > \frac{1}{\sqrt{n+1}} \]
于是得证。
说明:这里数归是从$n$到$n+2$而不是$n+1$是因为,试算了前面几项,发现它是一个锯齿数列,也就是偶数项都向1靠近,奇数项都向0靠近,所以就分别考虑两个子列了。

3

Threads

8

Posts

0

Reputation

Show all posts

djjtyq posted 2017-4-21 19:10
键盘驱动坏了。下次有时间再用代码改回来。
QQ图片20170421190432.jpg
QQ图片20170421190550.jpg

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:10 GMT+8

Powered by Discuz!

Processed in 0.015905 seconds, 25 queries