Forgot password?
 Register account
View 1815|Reply 6

[数列] 数列不等式

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2017-4-23 01:13 |Read mode
Last edited by hbghlyj 2025-5-10 18:45已知正项数列 $\an$ 满足 $a_n{ }^2+a_n=3 a_{n+1}{ }^2+2 a_{n+1}, a_1=1$ .
(1)证明:对任意实数 $n \in N_{+}, a_n \leq 2 a_{n+1}$ ;
(2)记数列 $\an$ 的前 $n$ 项和为 $S_n$ ,证明:对任意 $n \inN_{+}, 2-\frac{1}{2^{n-1}} \leq S_n<3$ .
第2问中Sn<3怎么证?请大家教教我,谢谢

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2017-4-23 07:40
由已知递推公式得到
\[a_{n+1}=\frac{-1+\sqrt{3}\sqrt{a_n^2+a_n+\frac{1}{3}}}{3}<\frac{-1+\sqrt{3}(a_n+\frac{1}{\sqrt{3}})}{3}=\frac{a_n}{\sqrt{3}}\]
所以前n项和$S_n\le 1+\frac{1}{\sqrt{3}}+\frac{1}{3}+...<\frac{1}{1-\frac{1}{\sqrt{3}}}=\frac{3+\sqrt{3}}{2}<3$

0

Threads

10

Posts

53

Credits

Credits
53

Show all posts

yfgkey Posted 2017-4-23 09:43
回复 2# realnumber


    这种题一般不这样解方程强撸,大多是利用那个关系放缩。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2017-4-23 11:44
回复  realnumber


    这种题一般不这样解方程强撸,大多是利用那个关系放缩。 ...
yfgkey 发表于 2017-4-23 09:43
继续

0

Threads

10

Posts

53

Credits

Credits
53

Show all posts

yfgkey Posted 2017-4-23 12:01
Last edited by hbghlyj 2025-5-10 18:46回复 4# realnumber

看看这样行不?
已知正项数列 $\left\{a_n\right\}$ 满足 $a_1=1, a_n^2+a_n=3 a_{n+1}^2+2 a_{n+1}$ .
( I )证明:对任意实数 $n \in N_{+}, a_n \leq 2 a_{n+1}$ ;
(II)记数列 $\left\{a_n\right\}$ 的前 $n$ 项和为 $S_n$ ,证明:对任意 $n \in N_{+}, 2-\frac{1}{2^{n-1}} \leq S_n<3$ .
证明:( I )因为 $a_n>0$ ,所以 $a_n^2+a_n=3 a_{n+1}^2+2 a_{n+1}<4 a_{n+1}^2+2 a_{n+1}$ .
所以 $\left(2 a_{n+1}+\frac{1}{2}\right)^2>\left(a_n+\frac{1}{2}\right)^2$ ,故 $a_n \leq 2 a_{n+1}$ .
(II)由(I)知 $a_{n+1} \geq \frac{1}{2} a_n$ ,所以 $a_n \geq \frac{1}{2} a_{n-1} \geq \frac{1}{2^2} a_{n-2} \geq \cdots \geq \frac{1}{2^{n-1}}$ .
所以 $S_n=a_1+a_2+\cdots+a_n \geq 1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^{n-1}}=2-\frac{1}{2^{n-1}}$ .
因为 $3 a_{n+1}^2+2 a_{n+1}=a_n^2+a_n \leq a_n^2+2 a_{n+1}$ ,所以 $a_{n+1} \leq \frac{a_n}{\sqrt{3}}$ .
所以 $a_n \leq \frac{a_{n-1}}{\sqrt{3}} \leq \frac{a_{n-2}}{3} \leq \cdots \leq \frac{a_1}{3^{\frac{n-1}{2}}}=\frac{1}{3^{\frac{n-1}{2}}}$ .
所以 $S_n \leq \sum_{k=1}^n 3^{\frac{1-k}{2}}<\frac{1}{1-\frac{1}{\sqrt{3}}}=\frac{3+\sqrt{3}}{2}<3$ .

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2017-4-23 12:29
也行

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2017-4-23 22:03
明白了,谢谢两位!

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit