Forgot password?
 Register account
View 2682|Reply 12

[函数] 求教:一个导数极值问题

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2017-4-23 11:51 |Read mode
$f(x)$满足$(xf(x))'=\ln{x},f(1)=0$,则$f(x)$(   )
A. 有极大值无极小值B.有极小值无极大值C.有极大值极小值D.无极大值极小值.


利用积分可得$f(x)=\ln{x}-1+\frac{1}{x},$所以选B.但这样没法给高中生解释,得想另外办法.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-4-23 12:01
记$h(x)=xf(x)$,易得h(x)在x=1处,有极小值,且h(1)=0,h(0+)趋于正无穷,
所以f(x)=h(x)/x,在x=1处也是极小值。
但极大值看不出有还是没有?

0

Threads

10

Posts

53

Credits

Credits
53

Show all posts

yfgkey Posted 2017-4-23 12:23
回复 2# realnumber


    直接积分就ok。我不会什么$什么的打法,直接打了。
xf(x)=xlnx-x+c,f(x)=lnx-1+c/x,f(1)=-1+c=0,c=1.
f(x)=lnx-1+1/x.
下面容易做。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-4-23 12:27
回复  realnumber


    直接积分就ok。我不会什么$什么的打法,直接打了。
xf(x)=xlnx-x+c,f(x)=lnx-1+c ...
yfgkey 发表于 2017-4-23 12:23
要求不用积分办法,浙江地区还没,1楼已经写了积分办法

0

Threads

10

Posts

53

Credits

Credits
53

Show all posts

yfgkey Posted 2017-4-23 12:37
Last edited by yfgkey 2017-4-23 18:01回复 4# realnumber

$f'(x)=\frac{x \ln x-h(x)}{x^2}$
令$g(x)=x \ln x-h(x)$,则$g'(x)= \ln x+1-h'(x)=1>0$
$g(x)$单调递增,$g(1)=0$
所以$x\in(0,1)$时,$g(x)<0$,$x\in(1,+∞)$时,$g(x)>0$
所以$f(x)$在$(0,1)$上减,在$(1,+∞)$上增,在$x=1$处取得极小值,没有极大值.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-4-23 12:49
回复 5# yfgkey


    谢谢,应该是这样做.

0

Threads

10

Posts

53

Credits

Credits
53

Show all posts

yfgkey Posted 2017-4-23 12:50
回复 6# realnumber


    编辑了一下,还挺难看的

0

Threads

10

Posts

53

Credits

Credits
53

Show all posts

yfgkey Posted 2017-4-23 17:54
回复 8# isee


    多谢指点

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-4-24 07:50
回复 1# realnumber
老题了!原式=f(x)+xdf(x)/dx=lnx;两边乘以x,xf(x)+x^2df(x)/dx=xlnx;
两边求导,有,d(x^2df(x)/dx)/dx=1,设g(x)=x^2df(x)/dx,x>0,
显然g(x)在x>0上为增函数,注意到f(x)在x=1处的导数为0,即g(1)=0,故当x∈(0,1)时,g(x)<0,即df(x)/dx<0;当x>1时,g(x)>0,即df(x)/dx>0;且

f(x)在x=1处的导数为0,结论为B。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-4-25 23:01
有个学生陈*这样做的:
$f(x)+xf'(x)=\ln{x}$,令x=1,得$f'(1)=0$
$xf(x)+x^2f'(x)=x\ln{x}$
所以$(x^2f'(x))'=1+\ln{x}-\ln{x}=1$
所以$x^2f'(x)=x+C,$,令x=1,得C=-1
即$f'(x)=\frac{x-1}{x^2}$后面略.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-4-25 23:29
其实都差不多

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2017-4-25 23:32

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit