|
Last edited by hbghlyj 2025-5-19 05:24考虑如下空间:
\[
\mathcal{S}:=\{S \text { on }(\Omega, \mathcal{F}, \mathbb{P}): S>0 \text { almost surely and } \mathbb{E}(S)=1\} .
\]
对任意这个空间里的$S$, 定义它的对称版本$\hat S$:
\[
\mathbb{P}(\hat{S} \leq z)=\mathbb{E}\left(S \mathbb{1}_{\{S \geq 1 / z\}}\right), \quad \text { for any } z>0 .
\]
(1)证明如下关系式:(这是答案,我不能理解第一行的积分是怎么来的?)
\[
\begin{aligned}
\mathbb{E}^{\hat{S}^{1-u}} & =\int_{\mathbb{R}_{+}}(1-u) x^{-u} \mathbb{P}(\hat{S}>x) \mathrm{d} x \\
& =\int_{\mathbb{R}_{+}}(1-u) x^{-u} \mathbb{E}\left(S 1_{\{S<1 / x\}}\right) \mathrm{d} x \\
& =\mathbb{E}\left(\int_0^{1 / S}(1-u) x^{-u} S \mathrm{~d} x\right)=\mathbb{E}\left(S^u\right)
\end{aligned}
\](2)已知下面的两个关系式:
\[
\begin{aligned}
& C_{\mathrm{BS}}(-x, t, \sigma)=1-\mathrm{e}^{-x}+\mathrm{e}^{-x} C_{\mathrm{BS}}(x, t, \sigma) \\
& 1-\mathrm{e}^{-x}+\mathrm{e}^{-x} \mathbb{E}\left(S-\mathrm{e}^x\right)_{+}=\mathbb{E}\left[S\left(S^{-1}-\mathrm{e}^{-x}\right)_{+}\right]
\end{aligned}
\]要求证明下面的关系式:(这是答案,我看不懂最后一行。。)
\begin{aligned}
C_{\mathrm{BS}}\left(-x, t, \sigma_t(x)\right) & =1-\mathrm{e}^{-x}+\mathrm{e}^{-x} C_{\mathrm{BS}}\left(x, t, \sigma_t(x)\right) \\
& =1-\mathrm{e}^{-x}+\mathrm{e}^{-x} \mathbb{E}\left(S_t-\mathrm{e}^x\right)_{+} \\
& =\mathbb{E}\left[S_t\left(S_t^{-1}-\mathrm{e}^{-x}\right)_{+}\right] \\
& =C_{\mathrm{BS}}\left(-x, t, \hat{\sigma}_t(-x)\right) .
\end{aligned} |
|