Forgot password?
 Create new account
View 1213|Reply 3

有关对称函数

[Copy link]

17

Threads

24

Posts

208

Credits

Credits
208

Show all posts

opuikl_0 Posted at 2017-5-1 09:28:53 |Read mode
考虑如下空间:
1.gif
对任意这个空间里的S, 定义它的对称版本S-hat:
2.gif

(1)证明如下关系式:(这是答案,我不能理解第一行的积分是怎么来的?)
3.gif

(2)已知下面的两个关系式:
4.gif
要求证明下面的关系式:(这是答案,我看不懂最后一行。。)
5.gif

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2017-5-1 10:37:48
Last edited by 战巡 at 2017-5-1 10:46:00第一问是个很常用的结论:
令$\phi(x)$为$R^+$上连续的单调函数,$X>0$  $a.s.$,有
\[E(\phi(X))=\phi(0)+\int_0^{+\infty}(1-F(x))d\phi(x)\]
证明并不困难
\[\int_0^{+\infty}(1-F(x))d\phi(x)=\int_0^{+\infty}\int_x^{+\infty}dF(y)d\phi(x)\]
易证这玩意可积,由Tonelli定理知可交换积分次序
\[=\int_0^{+\infty}\int_0^yd\phi(x)dF(y)=\int_0^{+\infty}(\phi(x)-\phi(0))dF(y)=E(\phi(x))-E(\phi(0))=E(\phi(x))-\phi(0)\]

至于第二问我不知道是什么鬼东西,不同的书用不同的符号,你最好解释清楚再问

17

Threads

24

Posts

208

Credits

Credits
208

Show all posts

 Author| opuikl_0 Posted at 2017-5-1 21:35:55
回复 2# 战巡

谢谢!看明白了!

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-20 08:11:27

相关帖子

战巡 发表于 2017-5-1 03:37
第一问是个很常用的结论:
令$\phi(x)$为$R^+$上连续的单调函数,$X>0$  $a.s.$,有
\[E(\phi(X))=\phi(0)+\int_0^{+\infty}(1-F(x))d\phi(x)\]
证明并不困难
\[\int_0^{+\infty}(1-F(x))d\phi(x)=\int_0^{+\infty}\int_x^{+\infty}dF(y)d\phi(x)\]
易证这玩意可积,由Tonelli定理知可交换积分次序
\[=\int_0^{+\infty}\int_0^yd\phi(x)dF(y)=\int_0^{+\infty}(\phi(x)-\phi(0))dF(y)=E(\phi(x))-E(\phi(0))=E(\phi(x))-\phi(0)\]
Unclear detail in an application of Fubini's theorem
Let $X$ be a positive r.v. and $f: \mathbb{R}^+ \rightarrow \mathbb{R}$ be a differentiable function with a continuous derivative such that $f(X)$ is integrable. Show that $$\Bbb E[f(X)] = f(0) + \int_0^{+\infty} f'(t)P(X\geq t)\,dt.$$
Proof of an alternative form of expectation of a function of a random variable.
Let X be a positive r.v. and $f : \mathbb{R}^{+} \rightarrow \mathbb{R}$ a differentiable function
with continuous derivative and such that $f(X)$ is integrable. Then
$\mathrm{E}[f(X)]=f(0)+\int_{0}^{+\infty} f^{\prime}(t) \mathrm{P}(X \geq t) d t$
Expected value of a function in terms of CDF

手机版Mobile version|Leisure Math Forum

2025-4-21 14:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list