Forgot password?
 Register account
View 1468|Reply 3

[分析/方程] 有关对称函数

[Copy link]

17

Threads

24

Posts

208

Credits

Credits
208

Show all posts

opuikl_0 Posted 2017-5-1 09:28 |Read mode
Last edited by hbghlyj 2025-5-19 05:24考虑如下空间:
\[
\mathcal{S}:=\{S \text { on }(\Omega, \mathcal{F}, \mathbb{P}): S>0 \text { almost surely and } \mathbb{E}(S)=1\} .
\]
对任意这个空间里的$S$, 定义它的对称版本$\hat S$:
\[
\mathbb{P}(\hat{S} \leq z)=\mathbb{E}\left(S \mathbb{1}_{\{S \geq 1 / z\}}\right), \quad \text { for any } z>0 .
\]
(1)证明如下关系式:(这是答案,我不能理解第一行的积分是怎么来的?)
\[
\begin{aligned}
\mathbb{E}^{\hat{S}^{1-u}} & =\int_{\mathbb{R}_{+}}(1-u) x^{-u} \mathbb{P}(\hat{S}>x) \mathrm{d} x \\
& =\int_{\mathbb{R}_{+}}(1-u) x^{-u} \mathbb{E}\left(S 1_{\{S<1 / x\}}\right) \mathrm{d} x \\
& =\mathbb{E}\left(\int_0^{1 / S}(1-u) x^{-u} S \mathrm{~d} x\right)=\mathbb{E}\left(S^u\right)
\end{aligned}
\](2)已知下面的两个关系式:
\[
\begin{aligned}
& C_{\mathrm{BS}}(-x, t, \sigma)=1-\mathrm{e}^{-x}+\mathrm{e}^{-x} C_{\mathrm{BS}}(x, t, \sigma) \\
& 1-\mathrm{e}^{-x}+\mathrm{e}^{-x} \mathbb{E}\left(S-\mathrm{e}^x\right)_{+}=\mathbb{E}\left[S\left(S^{-1}-\mathrm{e}^{-x}\right)_{+}\right]
\end{aligned}
\]要求证明下面的关系式:(这是答案,我看不懂最后一行。。)
\begin{aligned}
C_{\mathrm{BS}}\left(-x, t, \sigma_t(x)\right) & =1-\mathrm{e}^{-x}+\mathrm{e}^{-x} C_{\mathrm{BS}}\left(x, t, \sigma_t(x)\right) \\
& =1-\mathrm{e}^{-x}+\mathrm{e}^{-x} \mathbb{E}\left(S_t-\mathrm{e}^x\right)_{+} \\
& =\mathbb{E}\left[S_t\left(S_t^{-1}-\mathrm{e}^{-x}\right)_{+}\right] \\
& =C_{\mathrm{BS}}\left(-x, t, \hat{\sigma}_t(-x)\right) .
\end{aligned}

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2017-5-1 10:37
Last edited by 战巡 2017-5-1 10:46第一问是个很常用的结论:
令$\phi(x)$为$R^+$上连续的单调函数,$X>0$  $a.s.$,有
\[E(\phi(X))=\phi(0)+\int_0^{+\infty}(1-F(x))d\phi(x)\]
证明并不困难
\[\int_0^{+\infty}(1-F(x))d\phi(x)=\int_0^{+\infty}\int_x^{+\infty}dF(y)d\phi(x)\]
易证这玩意可积,由Tonelli定理知可交换积分次序
\[=\int_0^{+\infty}\int_0^yd\phi(x)dF(y)=\int_0^{+\infty}(\phi(x)-\phi(0))dF(y)=E(\phi(x))-E(\phi(0))=E(\phi(x))-\phi(0)\]

至于第二问我不知道是什么鬼东西,不同的书用不同的符号,你最好解释清楚再问

17

Threads

24

Posts

208

Credits

Credits
208

Show all posts

 Author| opuikl_0 Posted 2017-5-1 21:35
回复 2# 战巡

谢谢!看明白了!

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-2-20 08:11

相关帖子

战巡 发表于 2017-5-1 03:37
第一问是个很常用的结论:
令$\phi(x)$为$R^+$上连续的单调函数,$X>0$  $a.s.$,有
\[E(\phi(X))=\phi(0)+\int_0^{+\infty}(1-F(x))d\phi(x)\]
证明并不困难
\[\int_0^{+\infty}(1-F(x))d\phi(x)=\int_0^{+\infty}\int_x^{+\infty}dF(y)d\phi(x)\]
易证这玩意可积,由Tonelli定理知可交换积分次序
\[=\int_0^{+\infty}\int_0^yd\phi(x)dF(y)=\int_0^{+\infty}(\phi(x)-\phi(0))dF(y)=E(\phi(x))-E(\phi(0))=E(\phi(x))-\phi(0)\]
Unclear detail in an application of Fubini's theorem
Let $X$ be a positive r.v. and $f: \mathbb{R}^+ \rightarrow \mathbb{R}$ be a differentiable function with a continuous derivative such that $f(X)$ is integrable. Show that $$\Bbb E[f(X)] = f(0) + \int_0^{+\infty} f'(t)P(X\geq t)\,dt.$$
Proof of an alternative form of expectation of a function of a random variable.
Let X be a positive r.v. and $f : \mathbb{R}^{+} \rightarrow \mathbb{R}$ a differentiable function
with continuous derivative and such that $f(X)$ is integrable. Then
$\mathrm{E}[f(X)]=f(0)+\int_{0}^{+\infty} f^{\prime}(t) \mathrm{P}(X \geq t) d t$
Expected value of a function in terms of CDF

Mobile version|Discuz Math Forum

2025-6-5 19:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit