Forgot password?
 Register account
View 1971|Reply 2

[函数] 一个对数函数不等式

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2017-5-4 23:30 |Read mode
Last edited by 天音 2017-5-4 23:42设$x>0$,求证:$\dfrac{1}{(1+x)\ln(1+\dfrac{1}{x})}+\dfrac{1}{(1+\dfrac{1}{x})\ln(1+x)}\le \dfrac{1}{\ln 2}$。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-5 00:58

\[f(x)=\frac1{\ln\left( 1+\frac1x \right)},\]
经计算得其二阶导数
\[f''(x)=\frac{2-(2x+1)\ln\left( 1+\frac1x \right)}{x^2(x+1)^2\ln^3\left( 1+\frac1x \right)},\]
不难证明
\[\ln \left( 1+\frac1x \right)>\frac2{2x+1}\riff f''(x)<0,\]
即 $f(x)$ 为上凸函数,故由琴生不等式得
\begin{align*}
\frac1{(1+x)\ln \left( 1+\frac1x \right)}+\frac1{\left( 1+\frac1x \right)\ln (1+x)}
&=\frac1{1+x}f(x)+\frac x{1+x}f\left( \frac1x \right) \\
&\leqslant f\left( \frac1{1+x}\cdot x+\frac x{1+x}\cdot \frac1x \right) \\
&=\frac1{\ln2},
\end{align*}
当 $x=1$ 时取等。

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2017-5-10 00:26
谢谢,学习了
我也想过琴生,令x=e^t然后整项算二阶导数,但算不下去,没想到要这样用

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit