Forgot password?
 Register account
View 2858|Reply 3

[不等式] 2017德国数学奥林匹克不等式题目

[Copy link]

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-5-5 11:27 |Read mode
题目: 已知非负实数$x$、$y$、$z$满足$x+y+z=1$,求证:
  \[ 1 \leqslant \frac{x}{1-yz}+\frac{y}{1-zx}+\frac{z}{1-xy} \leqslant \frac{9}{8} \]

目前我只证得了左边,证明如下:
证明: 显见$0 \leqslant x,y,z \leqslant 1$,作代换
  \[ a=\frac{x}{1-yz}, \  b=\frac{y}{1-zx}, \  c=\frac{z}{1-xy} \]
  只需证明$1\leqslant a+b+c \leqslant 9/8$,在这代换下有$a,b,c \geqslant 0$,并且
  \begin{align*}
    a = {} & x+ayz \\
    b = {} & y+bzx \\
    c = {} & z+cxy
  \end{align*}
  三式相加并利用$x+y+z=1$得
  \[ a+b+c=1+ayz+bzx+cxy \]
  显然右边大于等于1,所以$a+b+c\geqslant 1$,原不等式左边得证。右边待证。

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

 Author| zhcosin Posted 2017-5-5 11:53
奶奶的,原来左边还有个瞬秒的方法:
\[ \frac{x}{1-yz}+\frac{y}{1-zx}+\frac{z}{1-xy} \geqslant x+y+z = 1 \]

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-5-5 12:19
回复 2# zhcosin



另外,右边可以证加强式
\[\frac{1}{1-xy}+\frac{1}{1-xz}+\frac{1}{1-yz}\leq\frac{27}{8}\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-3-30 23:57

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit