Forgot password?
 Register account
View 1992|Reply 1

[不等式] 一道2008年IMO不等式题目的换元法证明

[Copy link]

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-5-5 11:29 |Read mode
题目 设$a$,$b$,$c$是三个互不相等的实数,求证
  \[ \left( \frac{a}{a-b} \right)^2 + \left( \frac{b}{b-c} \right)^2 + \left( \frac{c}{c-a} \right)^2 \geqslant 1 \]

证明 作代换
  \[ x=\frac{a}{a-b}, \  y=\frac{b}{b-c} \  z=\frac{c}{c-a} \]
  则只需证$x^2+y^2+z^2 \geqslant 1$,而在这代换下,易知
  \[ \left( 1-\frac{1}{x} \right) \left( 1-\frac{1}{y} \right) \left( 1-\frac{1}{z} \right) = 1 \]
  整理即为
  \[ x+y+z = (xy+yz+zx)+1 \]
  记等式左右两边的公共值为$t$,则
    \[ x^2+y^2+z^2 = (x+y+z)^2-2(xy+yz+zx) = t^2-2(t-1)=(t-1)^2+1 \geqslant 1 \]
  得证。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-5-5 12:09
以前旧论坛的时候我也写过等价的题等价的事情……
6273b251gy1ffacx8l5ikg20qo1qqjtm.gif
这名字我喜欢

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit