Forgot password?
 Register account
View 1707|Reply 2

[几何] 抛物线和向量

[Copy link]

13

Threads

28

Posts

217

Credits

Credits
217

Show all posts

caesarxiu Posted 2017-5-8 20:53 |Read mode
请教一题,
动直线$l$与抛物线$C:x^2=4y$相交于$A、B$两点,$O$为坐标原点,若$\vv {AB} =2\vv {AG} $,则$(\vv {OA} -\vv {OB})^2-4\vv {OG} ^2$的最大值为?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-9 22:04
这个也没难度啊
$=(\vv{OA}-\vv{OB})^2-(\vv{OA}+\vv{OB})^2
=-4\vv{OA}\cdot\vv{OB}
=-4x_1x_2+(x_1x_2)^2/4
=\cdots$

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-10-20 18:17
Last edited by 走走看看 2022-3-7 15:21错了一个符号,应是$−4X1X2-\frac{(X1X2)^2}{4},最大值=16。$

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit