Forgot password?
 Register account
View 1910|Reply 8

[数列] 绕人的数列不等式

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-5-9 09:42 |Read mode
Last edited by 力工 2017-5-9 15:34数列{${a_n}$}满足$a_1=1,a_n=a_{n+1}+\dfrac{a_{n+1}^2}{n}$,记{$(a_na_{n+1})^2$}的前n项和为S,证明:$S<1-\dfrac{1}{n+1}$.

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-5-10 07:40
我想到的是用数归

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-5-11 18:58
Last edited by 力工 2017-5-13 12:20再来一道,向各位大神学习高招。
已知$\{a_n\}$:$a_n>0$,${a_n^2}+\dfrac{a_n}{2^n-1}=1$,求证:$\dfrac{1}{2^2a_1}+\dfrac{1}{3^2a_2}+\cdots +\dfrac{1}{(n+1)^2a_n}<a_n$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-12 22:04
我说……你这两题都不需要其他条件吗?每项都有两解,你确定真能做?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-5-13 12:19
回复 4# kuing
真的啊,要限定$\{a_n\}$为正项数列啊。偷偷改过来了。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-5-13 12:36
回复 5# 力工

真是嘀,以后你的题还是少碰为妙

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-5-15 11:03
回复 6# 色k

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-5-16 21:03
回复 6# 色k
请勿生气,还得多指点,以后一定注意。因为有时候题是回忆的。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2017-5-16 21:52
主楼的那个平方除以n的数列是不是有什么背景?发现有几个题都和这个数列相似。

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit