|
Last edited by 力工 2017-5-14 13:35以下两题,一定要用舒尔不等式才可行吗?
(1)已知正数$a,b,c:a+b+c=1$,则$\dfrac{a}{a+3bc}+\dfrac{b}{b+3ca}+\dfrac{c}{c+3ab}\geqslant \dfrac{3}{2}.
(2)已知$a,b,c$为正数,则$$\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}+\dfrac{4abc}{(a+b)(b+c)(c+a)}\geqslant 2$. |
|