Forgot password?
 Register account
View 1809|Reply 2

[不等式] 不用Schur不行吗?

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-5-13 12:28 |Read mode
Last edited by 力工 2017-5-14 13:35以下两题,一定要用舒尔不等式才可行吗?
(1)已知正数$a,b,c:a+b+c=1$,则$\dfrac{a}{a+3bc}+\dfrac{b}{b+3ca}+\dfrac{c}{c+3ab}\geqslant \dfrac{3}{2}.

(2)已知$a,b,c$为正数,则$$\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}+\dfrac{4abc}{(a+b)(b+c)(c+a)}\geqslant 2$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-13 14:24
第二题去分母就直接是 Schur 不等式了,所以这题简直本来就是 Schur …… 而你又不让用,那就相当于问 Schur 不等式的证法,所以你百度一下就好了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-13 14:57
第一题,见《撸题集》第34页题目 1.1.41.

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit