Forgot password
 Register account
View 1848|Reply 5

[不等式] 一道三元不等式的困惑

[Copy link]

1

Threads

9

Posts

0

Reputation

Show all posts

周险峰 posted 2017-5-21 17:58 |Read mode
设$a,b,c>0,ab+bc+ca=3$,证明\[\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\geqslant1\]
证明:\[\frac{a^2}{a+2b^2}=a-\frac{2ab^2}{a+2b^2}=a-\frac{2ab^2}{a+b^2+b^2}\geqslant a-\frac{2ab^2}{3\sqrt[3]{ab^2}}=a-\frac{2}{3}(ab)^\frac2{3}\]
所以\[\sum_{cyc}\frac{a^2}{a+2b^2} \geqslant\sum_{cyc}a-\frac 2{3}\sum_{cyc}(ab)^\frac2{3}\]
而\[\left(\sum_{cyc}a\right)^2\geqslant3\sum_{cyc}ab=9\riff\sum_{cyc}a\geqslant3\]
只需证\[\sum_{cyc}\left(ab\right)^\frac23\leqslant3\]
又\[\sum_{cyc}\left(a+b+ab\right)\geqslant3\sqrt[3]{a^2b^2}=3\left(ab\right)^\frac23\]
这里不会证明了!\[\color{red}{3=\sum_{cyc}ab\geqslant\sum_{cyc}\left(a+b+ab\right)}\]

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-5-21 18:10
证那个≤3直接用幂平均不就好了么

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-5-21 18:17
当然均值也可以:$3(ab)^{2/3}\le1+ab+ab$

1

Threads

9

Posts

0

Reputation

Show all posts

original poster 周险峰 posted 2017-5-21 18:35
哦哦!谢谢了!连这都没有想到啊!

1

Threads

9

Posts

0

Reputation

Show all posts

original poster 周险峰 posted 2017-5-21 18:57
将条件改一下:$\sqrt{a}+\sqrt{b}+\sqrt{c}=3$
证明:\[\sum_{cyc}\frac{a^2}{a+2b^2}\geqslant\sum_{cyc}a-\sum_{cyc}\frac23\left(ab\right)^\frac23\]
由柯西不等式可得\[3\sum_{cyc}a\geqslant\sum_{cyc}\left(\sqrt{a}\right)^2=9\]
还是这里的问题了:\[\color{red}{\sum_{cyc}\left(ab\right)^\frac23\leqslant3}\]
请教了!!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-5-22 00:09
将条件改一下:$\sqrt{a}+\sqrt{b}+\sqrt{c}=3$
证明:\[\sum_{cyc}\frac{a^2}{a+2b^2}\geqslant\sum_{cyc}a-\sum_{cyc}\frac23\left(ab\right)^\frac23\]
由柯西不等式可得\[3\sum_{cyc}a\geqslant\sum_{cyc}\left(\sqrt{a}\right)^2=9\]
还是这里的问题了:\[\color{red}{\sum_{cyc}\left(ab\right)^\frac23\leqslant3}\]
请教了!!
周险峰 发表于 2017-5-21 18:57
也就是在 $a$, $b$, $c>0$, $a+b+c=3$ 下,证明
\[\sum ab\sqrt[3]{ab}\leqslant3,\]
由均值知只需证
\[\sum ab(a+b+1)\leqslant9,\]
齐次化即为
\[3\sum ab(a+b)+\sum ab\sum a\leqslant \left(\sum a\right)^3,\]
展开发现这恰好是 \schur 不等式(运气)。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:13 GMT+8

Powered by Discuz!

Processed in 0.013224 seconds, 22 queries