Forgot password?
 Register account
View 3344|Reply 3

[几何] 用向量证明角平分线定理

[Copy link]

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2013-10-19 17:23 |Read mode
在三角形$AOB$中$OC$为$∠AOB$的角平分线段,$\vv{OA}=\vv{a}$,$\vv{OB}=\vv{b}$,则$\vv{OC}=λ\vv{a}+(1-λ)\vv{b}$,于是有$\vv{OC}=t(\frac{\vv{a}}{|\vv{a}|}+\frac{\vv{b}}{|\vv{b}|})$,则有$λ\vv{a}+(1-λ)\vv{b}=t(\frac{\vv{a}}{|\vv{a}|}+\frac{\vv{b}}{|\vv{b}|})$,从而用$\vv{a}$,$\vv{b}$,表示出$\vv{OC}$,然后证明其成比例就遇到麻烦了.
搜狗截图_2013-10-19_16-46-40.png

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-19 17:27
在三角形$AOB$中$OC$为$∠AOB$的角平分线段,$\vv{OA}=\vv{a}$,$\vv{OB}=\vv{b}$,则$\vv{OC}=λ\vv{a}+(1 ...
青青子衿 发表于 2013-10-19 17:23
$\lambda$和$1-\lambda$的意义弄清楚了,再用你的结果,立刻就证明角平分线定理了!
妙不可言,不明其妙,不着一字,各释其妙!

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-10-21 20:25
这里的$\lambda=\dfrac {BC}{BA}$,由推导的式子有$\lambda=t\cdot \dfrac{1}{\abs {\vec a}},\cdots$

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-10-21 20:37
Last edited by isee 2013-10-21 20:45结合1,2,3楼就把角平分线性质定理就给证出来了

方法也比“较洁”。


其实,向量证明,我觉得并不排除用几何法,如,设 $OC$的单位法向量为$\vv{\mathrm{e}},\mathrm{\vv e} \cdot \vv{OC}=0$,则
\[
\dfrac{BC}{CA}=\dfrac {\vv{BC}\cdot \mathrm{\vv e}}{\vv{CA}\cdot \mathrm{\vv e}}=\dfrac {(\vv{BO}+\vv{OC})\cdot \mathrm{\vv e}}{(\vv{CO}+\vv{OA})\cdot \mathrm{\vv e}}=\dfrac {\vv{BO}\cdot \mathrm{\vv e}}{\vv{OA}\cdot \mathrm{\vv e}}=\dfrac{BO}{OA}
\]

Mobile version|Discuz Math Forum

2025-6-5 18:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit