Forgot password?
 Register account
View 1816|Reply 3

[不等式] 五元指数不等式问题

[Copy link]

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-5-23 10:26 |Read mode
设 $a_i>0$,($i=1,\ldots,5$),$s=a_1+a_2+a_3+a_4+a_5$,证明或否定
\[
\sum_{i=1}^5 a_i^{s−a_i}>1
\]

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

 Author| hejoseph Posted 2017-10-8 21:00
似乎弄出来了,有个更一般的结论:
设 $n$ 是大于 1 的整数常数,$a_i>0$($i=1,\dots,n$),$s=\sum\limits_{i=1}^na_i$,则
\[
\begin{aligned}
&\sum_{i=1}^na_i^{s-a_i}>1,&n\leqslant 5~时,\\
&\sum_{i=1}^na_i^{s-a_i}\geqslant n\mathrm{e}^{-(n-1)/\mathrm{e}},&n>5~时。
\end{aligned}
\]
前一种情况在其中一个变量等于 1,其余变量无限趋近 0 时无限趋近 1;后一种情况在 $a_i=1/\mathrm{e}$($i=1,\dots,n$)时取得等号。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

 Author| hejoseph Posted 2017-10-9 16:16
昨天计算有些问题,现在就剩下下面这个问题了,如果解决,上面的整个问题就解决了:
设 $s$、$k$ 为常数, $1<s<3$,$0<a<1$,$k$ 是正整数,$s>ka$,求
\[
(s-ka)^{ka}+ka^{s-a}
\]
的最下确界。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2017-11-6 17:39
加油,这个长跑....

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit