|
kuing
Posted 2017-5-23 17:20
唉,又是不知谁在随便命题坑人啊……
如图,得
\begin{align*}
\vv{OP}\cdot\vv{PC}&=PC\cos (60+\alpha ) \\
& =\frac{\sin 2\alpha \cos (60+\alpha )}{\sin (60-\alpha )} \\
& =\frac{\sin 2\alpha \cos (60+\alpha )}{\sin (60+\alpha )\cos 2\alpha -\cos (60+\alpha )\sin 2\alpha } \\
& =\frac1{\tan (60+\alpha )\cot 2\alpha -1}, \\
\end{align*}
令 $\tan \alpha =\sqrt3\cdot t$, $t\in (0,1/3)$,则
\[\tan (60+\alpha )\cot 2\alpha =\frac{\sqrt3(1+t)}{1-3t}\cdot \frac{1-3t^2}{2\sqrt3t}=\frac{(1+t)(1-3t^2)}{2t(1-3t)},\]
从而
\[\vv{OP}\cdot\vv{PC}=\frac1{\frac{(1+t)(1-3t^2)}{2t(1-3t)}-1}=\frac{2t(1-3t)}{(1-t)(1+3t^2)}=f(t),\]
要求它的最大值,求导计算最终得
\[f'(t)=0 \iff 9t^4-6t^3+6t-1=0,\]
四次方程来了,快逃! |
|