Forgot password?
 Register account
View 1817|Reply 5

[几何] 请教一个题目,向量几何最值

[Copy link]

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

joatbmon Posted 2017-5-23 16:20 |Read mode
不会做,请教大家
1705231619f14ddd173237c87d.jpg

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted 2017-5-23 16:22
图片显示有点难看,我手打题目
半径为1的扇形$AOB$中,$\angle AOB=60^\circ,P$为弧上动点,$AP$与$OB$延长线交于点$C,$则$\vv{OP}\cdot\vv{PC}$的取值范围为

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-23 16:47
呃,你原题那字母上面的箭头都看不到,只看到一条横线,理应当作是有向线段啊

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-23 17:04
姆……要是真按向量玩的话,这题看来得扔啊,我已经看到了四次方程的影子……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-23 17:20
唉,又是不知谁在随便命题坑人啊……

捕获.PNG

如图,得
\begin{align*}
\vv{OP}\cdot\vv{PC}&=PC\cos (60+\alpha ) \\
& =\frac{\sin 2\alpha \cos (60+\alpha )}{\sin (60-\alpha )} \\
& =\frac{\sin 2\alpha \cos (60+\alpha )}{\sin (60+\alpha )\cos 2\alpha -\cos (60+\alpha )\sin 2\alpha } \\
& =\frac1{\tan (60+\alpha )\cot 2\alpha -1}, \\
\end{align*}
令 $\tan \alpha =\sqrt3\cdot t$, $t\in (0,1/3)$,则
\[\tan (60+\alpha )\cot 2\alpha =\frac{\sqrt3(1+t)}{1-3t}\cdot \frac{1-3t^2}{2\sqrt3t}=\frac{(1+t)(1-3t^2)}{2t(1-3t)},\]
从而
\[\vv{OP}\cdot\vv{PC}=\frac1{\frac{(1+t)(1-3t^2)}{2t(1-3t)}-1}=\frac{2t(1-3t)}{(1-t)(1+3t^2)}=f(t),\]
要求它的最大值,求导计算最终得
\[f'(t)=0 \iff 9t^4-6t^3+6t-1=0,\]
四次方程来了,快逃!

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted 2017-5-23 17:49
多谢答复,朋友给的题,说找不到那本书的答案了。。。。

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit