Forgot password?
 Register account
View 2442|Reply 16

[几何] 2015宁波镇海向量题

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2017-5-26 22:10 |Read mode
在$\triangle ABC$中,$CA=2,CB=6,\angle ACB=60\du$,若点$O$在$\angle ACB$的角平分线上,满足$\vv{OC}=m\vv{OA}+n\vv{OB},m,n\inR$,且$-\frac{1}{4}\leq n \leq -\frac{1}{20}$,则$\bigl|\vv{OC}\bigr|$的取值范围是 _____________.

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2017-5-27 00:08
可是$ [\frac{49}{10},\frac{49}{2}] ?$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-27 00:49
回复 2# shidilin

我算得是 $\left[\frac{\sqrt3}4,\frac{3\sqrt3}4\right]$,结果看起来没你的好看……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-5-27 01:02
就用一下那个FAQ好了
%\(\newcommand\ovs[1]{\overline{\S{#1}}}\)
根据《撸题集》第 1020 页定理 7.1.1,有 $\ovs{OBC}\cdot\vv{OA}+\ovs{OCA}\cdot\vv{OB}+\ovs{OAB}\cdot\vv{OC}=\bm0$,因 $O$ 在 $\angle ACB$ 的角平分线上,必有 $\ovs{OBC}:\ovs{OCA}=BC:CA=3$,从而 $m=3n$。

而 $(1-m-n)\vv{OC}=m\vv{CA}+n\vv{CB}$,即 $(1-4n)\vv{OC}=n\bigl(3\vv{CA}+\vv{CB}\bigr)$,因为 $3CA=CB$ 且 $\angle ACB=60\du$,则 $\bigl|3\vv{CA}+\vv{CB}\bigr|=\sqrt3CB=6\sqrt3$,故由 $-1/4\leqslant n\leqslant -1/20$ 得
\[OC=\frac{6\sqrt3}{4-\frac1n}
\in\left[\frac{\sqrt3}4,\frac{3\sqrt3}4\right].\]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2017-5-27 08:58
谢谢两位,ku版答案是对的。
另外我看到原帖里很多公式被修改了,想知道是自动改的还是人工改的啊?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-5-27 09:25
回复 5# 郝酒

哪有那么智能,是我改嘀,你可以编辑帖子看看我改了哪些

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2017-5-27 11:07
渲染前的公式已经看到了:)

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2017-5-27 18:05
因为OC是$\angle ACB$的平分线,
故$\vv{CO}=\fracλ2\vv{CA}+\fracλ6\vv{CB}$
然后,将上述中所有的向量,来个“换头手术”,将“头”换成O
“换头”后的做法,就同K版一样了。
老眼昏花,“换头”时,将$\vv{OC}$的系数,整错了。
最后,当然“手术”也就失败了!
KK,竟然还表扬我的比较漂亮!真是……

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-5-27 20:17
回复 8# shidilin

你的没根号嘛

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-5-31 21:24
Last edited by 走走看看 2017-6-1 09:08回复 8# shidilin


    如果不用Kuing的FAQ内容,按常规也能推出m=3n,但步骤较复杂。
    你的步骤是否也是按普通高中生的思路?如果是的话,请给出你的解答,让我观摩观摩。

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2017-6-1 12:34
回复 10# 走走看看
向量加法的几何意义啊!这个没有超纲啊!

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2017-6-1 12:41
$\vv{CO}=\fracλ2\vv{CA}+\fracλ6\vv{CB}$=$λ(\frac{\vv{CA}}{2}+\frac{\vv{CB}}{6})$

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2017-6-1 12:44
因为$\frac{\vv{CA}}{2}$与$\frac{\vv{CB}}{6}$都是单位向量
故$\frac{\vv{CA}}{2}+\frac{\vv{CB}}{6}$是$ \angle ACB $的角平分线

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-6-1 15:25
回复 10# 走走看看
212.png
如图:设角平分线交$ AB $于$ E $,在角平分线取一点$ D $,使$ OC=OD $,过$ D $作$ AO $平行线分别交$ AB、OB $于$ P、Q $。有\[ n=\dfrac{OQ}{OB}=\dfrac{AP}{AB} \]在角平分线上取点$ F $使$ BF=BE $连接$ BF $有\[\triangle ACE\sim \triangle BFC\riff \dfrac{AE}{EB}=\dfrac{AE}{FB}=\dfrac{AC}{BC}=\dfrac1{3}\riff \dfrac{AE}{AB}=\dfrac1{4}\]即$ n=\dfrac1{4} $时,$ D、E $点重合,$ \dfrac{CE}2 $就是最大值。
同理:当$ n=\dfrac1{20} $时,$ AP=\dfrac{AE}5 $,此时$ OC=\dfrac{CE}6 $即为最小值。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-6-2 09:50
好,明白了,谢谢大家!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-6-6 13:29
O在∠ACB的角平分线,则CO=k(1/2CA+1/6CB),
|OC|=|k|根号3;下面将k用n表示即可。
而OC=mOA+nOB=(m+n)OC+mCA+nCB,即(1-m-n)OC=mCA+nCB;
m+n≠1,m/(1-m-n)=k/2,,n/(1-m-n)=k/6,得m=3n,k=6n/(1-4n)(n≠1/4)又-1/4≤n≤-1/20,得-3/4≤k≤-1/4,由开始的|OC|=|k|根号3;易得答案。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-6-6 13:40
回复 14# 乌贼
纯几何解法有点复古的味道啊!欣赏一下。。。。。。

Mobile version|Discuz Math Forum

2025-5-31 11:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit