Forgot password
 Register account
View 1659|Reply 2

[函数] 函数求助(含参双绝对值)

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2017-5-30 14:05 |Read mode
OMCTYPY612G9}3Z7TT@A33I.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-5-30 15:03
无非就是各种讨论而已,挺无趣的……

若 $a\geqslant 2$,则 $x+1/x-a=0$ 有两个正数根 $x_1$, $x_2$($x_1\leqslant x_2$),而 $x-1/x-a=0$ 则有唯一正数根 $x_3$,显然有 $x_1\leqslant x_2<a<x_3$,故此,当 $x\in[x_1,x_2]$ 时,有 $f(x)=-(x+1/x-a)-(x-1/x-a)+2x-2a=0$,与题意不符;

若 $a<2$,则上面的 $x_1$, $x_2$ 不存在,但 $x_3$ 依然存在,此时
\[f(x)=\led
&\frac2x+2x-2a, && 0<x<x_3, \\
&4x-4a, && x\geqslant x_3,
\endled\]
则 $f(x)$ 连续且必先减后增,取最小值的点还要看 $x_3$,于是再分类。

若 $a\leqslant 0$,则 $x_3\leqslant 1$,此时 $f(x)_{\min}=f(x_3)=4x_3-4a=4/x_3\geqslant 4$,也与题意不符;

若 $0<a<2$,则 $x_3>1$,此时 $f(x)_{\min}=f(1)=4-2a$,所以 $4-2a=3/2$,即 $a=5/4$。

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2017-5-30 21:25
学习了谢谢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:49 GMT+8

Powered by Discuz!

Processed in 0.035012 seconds, 25 queries